
Noname manuscript No.
(will be inserted by the editor)

Entropy Stable h/p-Nonconforming Discretization
with the Summation-by-Parts Property for the
Compressible Euler and Navier–Stokes Equations

David C. Del Rey Fernández · Mark H.
Carpenter · Lisandro Dalcin · Stefano
Zampini · Matteo Parsani

Received: date / Accepted: date

Abstract In this paper, we extend the entropy conservative/stable algorithms
presented by Del Rey Fernández and coauthors [20,19] for the compressible Eu-
ler and Navier–Stokes equations on nonconforming p-refined/coarsened curvilinear
grids to h/p refinement/coarsening. The main difficulty in developing nonconform-
ing algorithms is the construction of appropriate coupling procedures across non-
conforming interfaces. Here, we utilize a computationally simple and efficient ap-
proach based upon using decoupled interpolation operators. The resulting scheme
is entropy conservative/stable and elementwise conservative. Numerical simula-
tions of the isentropic vortex and viscous shock propagation confirm the entropy
conservation/stability and accuracy properties of the method (achieving ∼ p + 1
convergence), which are comparable to those of the original conforming scheme
[5,42]. Simulations of the Taylor–Green vortex at Re = 1, 600 and turbulent flow
past a sphere at Re∞ = 2, 000 show the robustness and stability properties of the
overall spatial discretization for unstructured grids. Finally, to demonstrate the
entropy conservation property of a fully-discrete explicit entropy stable algorithm
with h/p refinement/coarsening, we present the time evolution of the entropy
function obtained by simulating the propagation of the isentropic vortex using a
relaxation Runge–Kutta scheme.

David C. Del Rey Fernández
National Institute of Aerospace and Computational AeroSciences Branch, NASA Langley Re-
search Center, Hampton, VA, United States
E-mail: dcdelrey@gmail.com

Mark H. Carpenter
NASA Langley Research Center, Hampton, VA, United States E-mail:
mark.h.carpenter@nasa.gov

Lisandro Dalcin, Stefano Zampini, Matteo Parsani
King Abdullah University of Science and Technology (KAUST), Computer Electrical and
Mathematical Science and Engineering Division (CEMSE), Extreme Computing Research Cen-
ter (ECRC), Thuwal, Saudi Arabia E-mail: dalcinl@gmail.com, stefano.zampini@kaust.edu.sa,
matteo.parsani@kaust.edu.sa

2 David C. Del Rey Fernández et al.

Keywords Nonconforming interfaces · h/p adaptation · Nonlinear entropy
stability · Summation-by-parts · Simultaneous-approximation-terms · High-order
accurate discretizations · Curved elements · Unstructured grid

1 Introduction

This paper is the final installment in a set of studies aimed at developing arbi-
trarily high-order, entropy stable, h/p-nonconforming schemes on curvilinear co-
ordinates for the compressible Euler and Navier–Stokes equations [29,20,18,19].
The efficient use of exascale concurrency on next generation hardware motivates
the search for algorithms that are accurate and robust. Moreover, essential to
efficiency is the ability to optimally use degrees of freedom through h-, p-, and r-
refinement/coarsening and communication hiding through dense compute kernels.
High-order methods are natural candidates for next generation hardware because
they are accurate and their ratio of communications to local computations is usu-
ally small; see, for instance, Refs. [32,33,2]. However, they have historically been
limited by robustness issues, which is even more important as problem size and
physics complexity increases.

When numerically solving partial differential equations (PDEs) it is impera-
tive to find a bound on the growth rate of the solution; otherwise, the possibility
exists that the solution could grow arbitrarily fast. This upper bound can be
established by ensuring that a numerical method is stable. For linear variable co-
efficient problems in arbitrary dimensions, a general and systematic approach to
ensure stability is the energy method because it can be applied to the continuous
as well as the semidiscrete model. The energy method becomes extremely powerful
when it is used in combination with the summation-by-parts (SBP) framework [22,
54] since it allows for the construction of provably stable schemes of any order.
SBP operators can be viewed as strong or weak form differentiation matrices that
mimic integration-by-parts (IBP) and are endowed with a telescoping property,
critical for provable stability. Via this property, SBP schemes (augmented with
appropriate interface coupling procedures, e.g., simultaneous approximation terms
(SATs) [7,8,38,39,9,55,43,44]) reproduce, in a one-to-one manner, continuous sta-
bility proofs. Therefore, they provide a road map for the development of provably
stable semidiscrete or fully discrete algorithms (see, for instance, Refs. [46,28]).

For nonlinear problems, a general and systematic approach for establishing
stability has yet to be found. Nevertheless, for a certain class of PDEs, progress
has been made. For conservation laws, Tadmor [56] constructed entropy conser-
vative/stable low-order finite volume schemes that achieve entropy conservation
by using two-point flux functions. When contracted with entropy variables, these
schemes telescope the entropy flux. Entropy stability is then achieved by adding
appropriate dissipation. For a review of these ideas see, for instance, Tadmor [57].

Tadmor’s approach was extended to finite domains and arbitrary high-order
finite difference WENO schemes in the work of Fisher and coauthors, who com-
bined the SBP framework with Tadmor’s two-point flux functions, resulting in
entropy stable semidiscrete schemes [24,26,25]. This approach inherits all of the
mechanics of linear SBP schemes for the imposition of boundary conditions and
interelement coupling and gives a systematic methodology for discretizing prob-
lems on complex domains; see, for instance, Refs. [5,44,62,42,31,61,14,12,28,21]

Title Suppressed Due to Excessive Length 3

and the references therein. An alternative method applicable to the compressible
Euler equations [40,64,48,49], uses specially chosen entropy functions that result
in a homogeneity property on the compressible Euler fluxes. Via this property, the
Euler fluxes are split such that when contracted with the entropy variables, sta-
bility estimates result, which are analogous in form to energy estimates obtained
for linear PDEs.

Until recently, the superior robustness and reliability of entropy stable dis-
cretizations were only investigated for inviscid flows [30,63,45] or low-speed viscous
flows [27,35] in simple geometries. Recently, Rojas and coauthors [47] and Parsani
and coauthors [41] have shown that low- and high-order entropy stable discon-
tinuous spatial discretizations based on SBP–SAT operators provide an essential
step toward a truly enabling technology in terms of reliability and robustness for
underresolved turbulent flow simulations, flows with discontinuities, and flow past
complex geometries.

The objective of this paper is the extension of entropy stable p-nonconforming
algorithm presented in Del Rey Fernández et al. [20,18,19] for the compressible
Euler and Navier–Stokes equations in curvilinear coordinates to arbitrary h/p-
refinement/coarsening. The novel contributions of this paper are summarized as
follows:

– A general and simple entropy conservative/stable nonconforming algorithm is
proposed in curvilinear coordinates for the compressible Euler and Navier–
Stokes equations that
– Enables a simple extension of the algorithm in Refs. [20,18,19] that uses

the same type of interface SAT and, therefore, allows code reutilization
– Results in the solution of the discrete geometric conservation laws (GCL)

that is local to each element
– Applies the metric approximation approach of Crean et al. [14] to arbitrary
h/p-nonconforming elements

– Ensures free-stream preservation by satisfying the discrete GCL conditions
– Is elementwise conservative

– Numerical evidence is provided to demonstrate that the scheme retains the
stability and accuracy properties of the conforming base scheme [5,42]

The paper is organized as follows. The notation is summarized in Section 2.
Next, and overview of the paper is given in Section 3. In Section 4, the h/p non-
conforming algorithm is detailed in the context of the linear convection-diffusion
equation. The required nonlinear mechanic necessary to extend the nonconforming
algorithm to the compressible Navier–Stokes equations is described in the simple
context of the Burgers’ equation in Section 5. Section 6 details the extension of
the nonconforming algorithm to the compressible Navier–Stokes equations. The
addition of interface dissipation that retains the provable properties of the base
algorithm is discussed in Section 7. Numerical experiments are detailed in Sec-
tion 8, while conclusions are drawn in Section 9. To give further insight into the
implementation of the algorithm, some key subroutines are provided in Appendix
A.

4 David C. Del Rey Fernández et al.

2 Notation and definitions

The notation used herein is identical to that in Refs. [20,18,19]; readers famil-
iar with the notation can skip to Section 4. PDEs are discretized on cubes hav-
ing Cartesian computational coordinates denoted by the triple (ξ1, ξ2, ξ3), where
the physical coordinates are denoted by the triple (x1, x2, x3). Vectors are repre-
sented by lowercase bold font, for example u, while matrices are represented using
sans-serif font, for example, B. Continuous functions on a space-time domain are
denoted by capital letters in script font. For example,

U (ξ1, ξ2, ξ3, t) ∈ L2 ([α1, β1]× [α2, β2]× [α3, β3]× [0, T])

represents a square integrable function, where t is the temporal coordinate. The
restriction of such functions onto a set of mesh nodes is denoted by lower case bold
font. For example, the restriction of U onto a grid of N1×N2×N3 nodes is given
by the vector

u =
[
U
(
ξ(1), t

)
, . . . ,U

(
ξ(N), t

)]T
,

where, N is the total number of nodes (N ≡ N1N2N3) square brackets ([]) are
used to delineate vectors and matrices as well as ranges for variables (the context
will make clear which meaning is being used). Moreover, ξ is a vector of vectors
constructed from the three vectors ξ1, ξ2, and ξ3, which are vectors of size N1,
N2, and N3 and contain the coordinates of the mesh in the three computational
directions, respectively. Finally, ξ is constructed as

ξ(3(i− 1) + 1 : 3i) ≡ ξ(i) ≡ [ξ1(i), ξ2(i), ξ3(i)]T ,

where the notation u(i) means the ith entry of the vector u and u(i : j) is the sub-
vector constructed from u using the ith through jth entries (i.e., Matlab notation
is used).

Oftentimes, monomials are discussed and the following notation is used:

ξjl ≡
[
(ξl(1))j , . . . , (ξl(Nl))

j
]T
,

and the convention that ξjl = 0 for j < 0 is used.
Herein, one-dimensional SBP operators are used to discretize derivatives. The

definition of a one-dimensional SBP operator in the ξl direction, l = 1, 2, 3, can be
found in Refs. [17,22,54]

Definition 1 Summation-by-parts operator for the first derivative: A ma-

trix operator with constant coefficients, D
(1D)
ξl

∈ RNl×Nl , is an SBP operator of

degree p approximating the derivative ∂
∂ξl

on the domain ξl ∈ [αl, βl] with nodal
distribution ξl having Nl nodes, if

1. D
(1D)
ξl

ξjl = jξj−1
l , j = 0, 1, . . . , p;

2. D
(1D)
ξl

≡
(

P
(1D)
ξl

)−1
Q

(1D)
ξl

, where the norm matrix, P
(1D)
ξl

, is symmetric posi-

tive definite;

3. Q
(1D)
ξl

≡
(

S
(1D)
ξl

+ 1
2E

(1D)
ξl

)
, S

(1D)
ξl

= −
(

S
(1D)
ξl

)T
, E

(1D)
ξl

=
(

E
(1D)
ξl

)T
, E

(1D)
ξl

=

diag (−1, 0, . . . , 0, 1) = eNle
T
Nl−e1le

T
1l , e1l ≡ [1, 0, . . . , 0]T, and eNl ≡ [0, 0, . . . , 1]T.

Title Suppressed Due to Excessive Length 5

Thus, a degree p SBP operator is one that differentiates exactly monomials up to
degree p.

In this work, one-dimensional SBP operators are extended to multiple dimen-
sions using tensor products (⊗). The tensor product between the matrices A and
B is given as A⊗ B. When referencing individual entries in a matrix the notation
A(i, j) is used, which means the ith jth entry in the matrix A.

The focus in this paper is exclusively on diagonal-norm SBP operators. More-
over, the same one-dimensional SBP operators are used in each direction, each
operating on N nodes. Specifically, diagonal-norm SBP operators constructed on
the Legendre–Gauss–Lobatto (LGL) nodes are used, i.e., a discontinuous Galerkin
collocated spectral element approach is utilized.

The physical domain Ω ⊂ R3, with boundary Γ ≡ ∂Ω is partitioned into K
nonoverlapping hexahedral elements. The domain of the κth element is denoted
by Ωκ and has boundary ∂Ωκ. Numerically, PDEs are solved in computational
coordinates, where each Ωκ is locally transformed to Ω̂κ, with boundary Γ̂ ≡ ∂Ω̂κ,
under the following assumption:

Assumption 1 Each element in physical space is transformed using a local and
invertible curvilinear coordinate transformation that is compatible at shared in-
terfaces, meaning that points in computational space on either side of a shared
interface are mapped to the same physical location and, therefore, map back to the
analogous location in computational space; this is the standard assumption that the
curvilinear coordinate transformation is watertight.

3 An overview of the paper

The required mechanics to construct entropy conservative/stable discretizations
can be involved and this is made exponentially worse by the introduction of non-
conforming interfaces. We have made an effort in this paper to help the reader
in understanding both the theory as well as the practical implementation. As a
result, there is a fair amount of material to digest. To help the reader further, in
this section, we highlight the main ideas and give a guided tour of the paper.

At its core, the entropy conservative/stable discretization requires an SBP
operator over the mesh and an appropriate two-point flux function. In other
words, given a discretization that maintains the SBP property, an entropy conser-
vative/stable discretization can always be constructed (assuming the continuous
theory exists and an appropriate two-point flux function can be found). This no-
tion allows us to separate the task of building an entropy conservative/stable
discretization into 1) finding a discretization that maintains the SBP property for
a linear analogue of the compressible Navier–Stokes equations and 2) extending
this discretization to the compressible Navier–Stokes equations and combining it
with an appropriate two-point flux function. This separation is also the approach
taken in this paper.

The SBP property of elementwise SBP differentiation matrices is extended to
the global SBP operator over the mesh by appropriate element coupling proce-
dures, e.g., SATs. The main difficulty in constructing appropriate SATs for non-
conforming interfaces is how to maintain the SBP property of the global mesh
level SBP operator.

6 David C. Del Rey Fernández et al.

In Section 4, the construction of appropriate coupling procedures, obtained
by interpolating between nonconforming meshes, is introduced in the context of
the convection-diffusion equation (the linear analogue of the compressible Navier–
Stokes equations that we use to develop our schemes). We use the notion of macro
SBP operators over sets of nonconforming elements to elucidate the conditions
required to obtain the SBP property for the global SBP operator. However, there
are a multitude of ways of constructing appropriate interelement coupling and it is
important that the final SBP operator decouples from the conditions required on
the metric terms for free-stream preservation. The latter requirement leads to an
algorithm that only necessitates local elementwise approximations to the metric
terms so that the free-stream is preserved and entropy conservation/stability is
achieved. The construction of SATs that satisfy this additional constraint is the
main contribution of this paper. Moreover, in Section 4.4, we delineate how to
approximate the metric terms appropriately.

With our nonconforming discretization that results in a global SBP operator,
we then turn the attention to the required mechanics needed to construct an en-
tropy conservative/stable discretization. Since the procedure is involved, we first
focus on the simple context of the viscous Burgers’ equation; Section 5. Next, in
Section 6, we combine the nonconforming linear algorithm and the nonlinear me-
chanics to construct a discretization for the compressible Navier–Stokes equations.
To further guide the reader on how to practically implement the discretization,
we give additional details in Appendix A and Appendix B. The remainder of the
paper is as described in the introduction.

4 An h/p-nonconforming algorithm: Linear convection-diffusion
equation

In this paper, the focus is on curvilinearly mapped elements with interfaces that 1)
are conforming but have nonconforming nodal distributions, such as would arise
in p-refinement, 2) elements that have nonconforming faces, such as would arise in
h-refinement, and 3) arbitrary combinations of 1) and 2). The development of an
entropy stable h/p-refinement algorithm for the compressible Euler equations on
Cartesian grids is detailed in Ref. [29]. The extension to curvilinear coordinates and
p-refinement for the compressible Euler and Navier–Stokes equations is detailed in
the series of papers [20,19,18], where an interface coupling technique is introduced
that maintains, accuracy, discrete entropy conservation/stability and elementwise
conservation and requires only local solves to approximate metric terms. Herein,
the algorithm in Refs. [20,19,18] is extended to allow for arbitrary h/p-refinement
on unstructured grids for the compressible Euler and Navier–Stokes equations.

4.1 Continuous and semidiscrete analysis

A number of key technical difficulties that arise in developing a stable and conser-
vative nonconforming discretization for the compressible Navier–Stokes equations
are already present in the simpler context of the linear convection-diffusion equa-
tion. As a result, the proposed interface coupling procedure for both the inviscid

Title Suppressed Due to Excessive Length 7

and viscous terms are first presented for this simple linear scalar equation. In
Cartesian coordinates, the linear convection-diffusion equation reads

∂U
∂t

+
3∑

m=1

∂ (amU)

∂xm
=

3∑

m=1

∂2(bmU)

∂x2m
, (1)

where (amU) and ∂(bmU)
∂xm

are the inviscid and viscous fluxes, respectively. The sym-
bols am correspond to the constant components of the convection speed whereas
bm are the positive and constant diffusion coefficients. The stability of (1) can
be determined via the energy method, which proceeds by multiplying (1) by the
solution, (U), and after using the product rule yields

1

2

∂U2

∂t
+

1

2

3∑

m=1

∂
(
amU2

)

∂xm
=

3∑

m=1

{
∂

∂xm

(
U ∂(bmU)

∂xm

)
−
(
∂(
√
bmU)

∂xm

)2
}
. (2)

Integrating over the domain, Ω, using integration by parts, and the Leibniz rule
gives

d

dt

∫

Ω

U2

2
dΩ =

1

2

3∑

m=1

(∮

Γ

{
−
(
amU2

)
+ 2U (bmU)

∂xm

}
nxmdΓ − 2

∫

Ω

(
∂(
√
bmU)

∂xm

)2

dΩ

)
,

(3)

where nxm is the mth component of the outward facing unit normal. What Eq. (3)
demonstrates is that the time rate of change of the norm of the solution, ‖U‖2 ≡∫
Ω
U2dΩ, depends on surface flux integrals and a viscous dissipation term. This

implies that, in combination with appropriate boundary conditions, Eq. (3) results
in a bound on the solution in terms of the data of the problem, and, therefore, a
proof of stability. The SBP framework used in this paper is mimetic of the above
energy stability analysis in a one-to-one fashion and results in similar stability
statements for the semidiscrete equations.

Derivatives are approximated using differentiation matrices that are defined
in computational space. To do so, Eq. (1) is transformed using the curvilinear
coordinate transformation xm = xm (ξ1, ξ2, ξ3). Thus, on the κth element, the xm
derivatives are expanded using the chain rule as

∂

∂xm
=

3∑

l=1

∂ξl
∂xm

∂

∂ξl
,

∂2

∂x2m
=

3∑

l,a=1

∂ξl
∂xm

∂

∂ξl

(
∂ξa
∂xm

∂

∂ξa

)
.

Multiplying by the metric Jacobian, (Jκ), Eq. (1) becomes

Jκ
∂U
∂t

+
3∑

l,m=1

Jκ
∂ξl
∂xm

∂ (amU)

∂ξl
=

3∑

l,a,m=1

Jκ
∂ξl
∂xm

∂

∂ξl

(
∂ξa
∂xm

∂(bmU)

∂ξa

)
. (4)

8 David C. Del Rey Fernández et al.

Herein, Eq. (4) is referenced as the chain rule form of Eq. (1). Bringing the
metric terms, Jκ ∂ξl

∂xm
, inside the derivative and using the product rule gives

Jκ
∂U
∂t

+
3∑

l,m=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

amU
)
−

3∑

l,m=1

amU
∂

∂ξl

(
Jκ

∂ξl
∂xm

)
=

3∑

l,a,m=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

∂ξa
∂xm

∂(bmU)

∂ξa

)
−

3∑

l,a,m=1

∂ξa
∂xm

∂(bmU)

∂ξa

∂

∂ξl

(
Jκ

∂ξl
∂xm

)
.

(5)

The last terms on the left- and right-hand sides of (5) are zero via the GCL
relations

3∑

l=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

)
= 0, m = 1, 2, 3, (6)

leading to the strong conservation form of the convection-diffusion equation in
curvilinear coordinates:

Jκ
∂U
∂t

+
3∑

l,m=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

amU
)

=
3∑

l,a,m=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

∂ξa
∂xm

∂(bmU)

∂ξa

)
. (7)

The h-refinement procedure proceeds by subdividing the computational do-
main of parent elements, where children elements inherit the curvilinear coordi-
nate transformation of the parent element. It is therefore convenient to introduce
two computational coordinates:

– ξl, which is the mapping from the child element to physical space, i.e., the
computational coordinate system of the κth element,

– ξ̂l, which is the mapping from the parent element to the physical space.

The mapping from children to parent elements is rectilinear. Thus, assuming that
the child element has a computational domain of [−1, 1]3, this transformation for
the κth element is given by

ξl =
2

∆κl
ξ̂l −

(
Ĥlκ + L̂lκ

)

∆κl
, ∆κl ≡ Ĥlκ − L̂lκ, l = 1, 2, 3, (8)

where Ĥlκ and L̂lκ are the largest and smallest extent of the ξl coordinate in the
coordinate system of the parent element (ξ̂l). Using Eq. (8) the Jacobian and

metrics are recast in terms of the Jacobian, Ĵκ, and metrics terms, Ĵκ ∂ξ̂l
∂xm

, of the
parent element. This step results in

∂ξl
∂xm

=
2

∆κl

∂ξ̂l
∂xm

, Jκ =
∆κ1∆

κ
2∆

κ
3

8
Ĵκ, Jκ

∂ξl
∂xm

=
∆κ1∆

κ
2∆

κ
3

4∆κl
Ĵκ

∂ξ̂l
∂xm

. (9)

Inserting Eq. (9) into Eq. (4) and multiplying by 8/ (∆κ1∆
κ
2∆

κ
3) gives

Ĵκ
∂U
∂t

+
3∑

l,m=1

2

∆κl
Ĵκ

∂ξ̂l
∂xm

∂ (amU)

∂ξl
=

3∑

l,a,m=1

4

∆κl ∆
κ
a
Ĵκ

∂ξ̂l
∂xm

(
∂ξ̂a
∂xm

∂(bmU)

∂ξa

)
.

(10)

Title Suppressed Due to Excessive Length 9

Similarly, Eq. (5) is transformed to

Ĵκ
∂U
∂t

+
3∑

l,m=1

2

∆κl

∂

∂ξl

(
Ĵκ

∂ξ̂l
∂xm

amU

)
−

3∑

l,m=1

2

∆κl
amU

∂

∂ξl

(
Ĵκ

∂ξ̂l
∂xm

)
=

3∑

l,a,m=1

4

∆κl ∆
κ
a

∂

∂ξl

(
Ĵκ

∂ξ̂l
∂xm

∂ξ̂a
∂xm

∂(bmU)

∂ξa

)

−
3∑

l,a,m=1

4

∆κl ∆
κ
a

∂ξ̂a
∂xm

∂(bmU)

∂ξa

∂

∂ξl

(
Ĵκ

∂ξ̂l
∂xm

)
,

(11)

and Eq. (7) is transformed to

Ĵκ
∂U
∂t

+
3∑

l,m=1

2

∆κl

∂

∂ξl

(
Ĵκ

∂ξ̂l
∂xm

amU

)
=

3∑

l,a,m=1

4

∆κl ∆
κ
a

∂

∂ξl

(
Ĵκ

∂ξ̂l
∂xm

∂ξ̂a
∂xm

∂(bmU)

∂ξa

)
.

(12)

Directly discretizing Eq. (12) leads to semidiscrete schemes that are not guaranteed
to be stable. Instead, a well-known approach is to use a canonical splitting of the
inviscid terms that is constructed by using one half of the inviscid terms in Eq.
(10) and one half of the inviscid terms in Eq. (11) (see, for instance Ref. [10]). On
the other hand, the viscous terms are treated in strong conservation form. This
process results in

Ĵκ
∂U
∂t

+
1

2

3∑

l,m=1

2

∆κl

{
∂

∂ξl

(
Ĵκ

∂ξ̂l
∂xm

amU

)
+ Ĵκ

∂ξ̂l
∂xm

∂

∂ξl
(amU)

}

− 1

2

3∑

l,m=1

{
amU

∂

∂ξl

(
Jκ

∂ξl
∂xm

)}
=

3∑

l,a,m=1

4

∆κl ∆
κ
a

∂

∂ξl

(
Ĵκ

∂ξ̂l
∂xm

∂ξ̂a
∂xm

∂(bmU)

∂ξa

)
,

(13)

where the last set of terms on the left-hand side are zero by the GCL conditions (6).
Now, consider discretizing Eq. (13) by using the following differentiation matrices:

Dξ1 ≡ D(1D) ⊗ IN ⊗ IN , Dξ2 ≡ IN ⊗ D(1D) ⊗ IN , Dξ3 ≡ IN ⊗ IN ⊗ D(1D),

where IN is an N × N identity matrix. The diagonal matrices containing the
metric Jacobian and metric terms along their diagonals, respectively, are defined
as follows:

Ĵκ ≡ diag
(
Ĵκ
(
ξ(1)

)
, . . . , Ĵκ

(
ξ(Nκ)

))
,

[
Ĵκ

∂ξ̂l
∂xm

]

κ

≡ diag

(
Ĵκ

∂ξ̂l
∂xm

(ξ(1)), . . . , Ĵκ
∂ξ̂l
∂xm

(ξ(Nκ))

)
,

10 David C. Del Rey Fernández et al.

where Nκ ≡ N3 is the total number of nodes in the element κ. With these matrices,
the discretization of (13) on the κth element is given as

Ĵκ
duκ
dt

+
1

2

3∑

l,m=1

2

∆κl
am

{
Dξl

[
Ĵκ

∂ξ̂l
∂xm

]

κ

+

[
Ĵκ

∂ξ̂l
∂xm

]

κ

Dξl

}
uκ

− 1

2

3∑

l,m=1

{
2

∆κl
am diag (uκ) Dξl

[
Ĵκ

∂ξ̂l
∂xm

]

κ

1κ

}
=

3∑

l,m,a=1

4

∆κl ∆
κ
a
bmDκξl Ĵ

−1
κ

[
Ĵκ

∂ξ̂l
∂xm

]

κ

[
Ĵκ

∂ξ̂a
∂xm

]

κ

Dκξauκ,

(14)

where 1κ is a vector of ones of the size of the number of nodes on the κth element
and the SATs have been dropped as they are not important for the current analysis.
In the same way as in the continuous case, the semidiscrete equations have an
associated set of discrete GCL conditions

3∑

l=1

2

∆κl
Dξl

[
Ĵκ

∂ξ̂l
∂xm

]

κ

1κ = 0, m = 1, 2, 3, (15)

that if satisfied, lead to the following telescoping and therefore, provably stable
semidiscrete form:

Ĵκ
duκ
dt

+
1

2

3∑

l,m=1

2

∆κl
am

{
Dξl

[
Ĵκ

∂ξ̂l
∂xm

]

κ

+

[
Ĵκ

∂ξ̂l
∂xm

]

κ

Dξl

}
uκ =

3∑

l,m,a=1

4

∆κl ∆
κ
a
bmDκξl Ĵ

−1
κ

[
Ĵκ

∂ξ̂l
∂xm

]

κ

[
Ĵκ

∂ξ̂a
∂xm

]

κ

Dκξauκ.

(16)

How to construct metrics that satisfy the discrete GCL conditions of Eq. (15) will
be detailed later in the paper and is one of the major contributions of this work.
In the next subsection, attention is focused on the construction of appropriate
interface coupling procedures that retain the stability (telescoping) properties of
the scheme represented by Eq. (16) across h/p nonconforming elements (the pure
p nonconforming case is detailed in Refs. [19,20,18]).

4.2 The nonconforming interface

To simplify both the analysis as well as the presentation of the semidiscrete scheme
discussed in this paper, it is convenient to focus the attention on a shared interface
between two elements only, one of which is h/p-refined. Without loss of general-
ity, five elements are considered that have aligned computational coordinates and
adjoin along a vertical interface; see Fig. 1. The focus is on nonconformities that
arise from both h refinement/coarsening as well as local approximations with dif-
fering polynomial degrees, as would result from p-refinement/coarsening. Thus,
the generic example, Fig. 1, considers a left element having polynomial degree
pL and a set of four right elements having polynomial degrees pRf , f = 1, 2, 3, 4,
possibly all having differing degrees and not equal to pL (i.e., they originate from

Title Suppressed Due to Excessive Length 11

Left element: Right elements:

pL,

DL
ξl
,QL

ξl
,EL
ξl L

pRf ,

D
Rf
ξl
,Q

Rf
ξl
,E

Rf
ξl

,

f = 1, 2, 3, 4R1

R2

R3

R4

ξ2

ξ3

Fig. 1: Generic surface used to describe the construction of various quantities as
well as to simplify the analysis of the semidiscrete schemes.

a conforming right element that has been h-refined and then p-refined/coarsened).
Therefore, the contributions from the left element are identified with subscript or
superscript L, and similarly for the right elements with subscripts or superscripts
Rf ; see Fig. 1.

The analysis proceeds by developing macro matrix differentiation operators
over the five elements, i.e., composed of elements L and Rf , f = 1, 2, 3, 4, and then
determining the required modifications/restrictions so that the resulting operators
have the SBP property. A naive construction, in the computational coordinates of
the parent elements, would be the following operators:

D̃ξ̂l ≡




DL
ξ̂l

DR1

ξ̂l
. . .

DR4

ξ̂l



, l = 1, 2, 3, (17)

where the elementwise components of the SBP operators, for example DL
ξ̂1

, are

constructed as

DL
ξ̂1
≡ 2

∆L
1

Dξ1 , Dξ1 ≡ D
(1D)
L ⊗ IL ⊗ IL,

PL ≡
∆L

1∆
L
2∆

L
3

8
P
(1D)
L ⊗ P

(1D)
L ⊗ P

(1D)
L ,

QL
ξ̂1
≡ ∆L

2∆
L
3

4
Q

(1D)
L ⊗ P

(1D)
L ⊗ P

(1D)
L ,

EL
ξ̂1
≡ ∆L

2∆
L
3

4

{
eLN

(
eLN

)
⊗ P

(1D)
L ⊗ P

(1D)
L − eL1

(
eL1

)
⊗ P

(1D)
L ⊗ P

(1D)
L

}
,

where IL is an identity matrix of size N
1/3
L ×N1/3

L and NL is the total number of
nodes in element L.

The macro element operators D̃ξ̂i are not SBP (i.e., they do not telescope to

the boundaries). To make them SBP appropriate, the interelement coupling needs

to be introduced. For the D̃ξ̂2 and D̃ξ̂3 operators, this is achieved using standard

SATs. For the D̃ξ̂1 operator, interpolation operators that interpolate information
from elements Rf to element L and vice versa are needed. For simplicity, the inter-
polation operators use only tensor product surface information from the adjoining
interface surface.

12 David C. Del Rey Fernández et al.

With this background, general matrix difference operators between the five
elements are constructed as

D̃ξ̂l = P̃−1Q̃ξ̂l = P̃−1

(
S̃ξ̂l +

1

2
Ẽξ̂l

)
. (18)

Focusing on the direction orthogonal to the interface (ξ1), the relevant matrices
are given by

P̃ ≡ diag (PL,PR1
,PR2

,PR3
,PR4

) ,

S̃ξ̂1 ≡




SL
ξ̂1

S̃12 S̃13 S̃14 S̃15

S̃21 SR1

ξ̂1

S̃31 SR2

ξ̂1

S̃41 SR3

ξ̂1

S̃51 SR4

ξ̂1



,

S̃12 ≡
∆L

2∆
L
3

4
eLN

(
eR1
1

)T
⊗P

(1D)
L I2R1toL ⊗ P

(1D)
L I3R1toL,

S̃21 ≡ −
∆R1

2 ∆R1
3

4
eR1
1

(
eLN

)T
⊗P

(1D)
R1

I2LtoR1
⊗ P

(1D)
R1

I3LtoR1
,

S̃13 ≡
∆L

2∆
L
3

4
eLN

(
eR2
1

)T
⊗P

(1D)
L I2R2toL ⊗ P

(1D)
L I3R2toL,

S̃31 ≡ −
∆R2

2 ∆R2
3

4
eR2
1

(
eLN

)T
⊗P

(1D)
R2

I2LtoR2
⊗ P

(1D)
R2

I3LtoR2
,

S̃14 ≡
∆L

2∆
L
3

4
eLN

(
eR3
1

)T
⊗P

(1D)
L I2R3toL ⊗ P

(1D)
L I3R3toL,

S̃41 ≡ −
∆R3

2 ∆R3
3

4
eR3
1

(
eLN

)T
⊗P

(1D)
R3

I2LtoR3
⊗ P

(1D)
R3

I3LtoR3
,

S̃15 ≡
∆L

2∆
L
3

4
eLN

(
eR4
1

)T
⊗P

(1D)
L I2R4toL ⊗ P

(1D)
L I3R5toL,

S̃51 ≡ −
∆L

2∆
R4
3

4
eR4
1

(
eLN

)T
⊗P

(1D)
R4

I2LtoR5
⊗ P

(1D)
R5

I3LtoR5
,

Ẽξ̂1 ≡




Ẽ11

Ẽ22

. . .

Ẽ55


 ,

Ẽ11 ≡ −
∆L

2∆
L
3

4
eL1

(
eL1

)T
⊗ P

(1D)
L ⊗ P

(1D)
L ,

Ẽ22 ≡
∆R1

2 ∆R1
3

4
eR1

N

(
eR1

N

)T
⊗ P

(1D)
R1

⊗ P
(1D)
R1

,

Ẽ55 ≡
∆R4

2 ∆R4
3

4
eR4

N

(
eR4

N

)T
⊗ P

(1D)
R4

⊗ P
(1D)
R4

,

(19)

and IlRf toL and IlLtoRf
are one-dimensional interpolation operators, in the l direc-

tion, from the Rf element to the L element and vice versa.

Title Suppressed Due to Excessive Length 13

A necessary constraint that the SBP formalism places on D̃ξ̂1 is skew-symmetry

of the S̃ξ̂1 matrices. The block-diagonal matrices in S̃ξ̂1 are already skew-symmetric
but the off diagonal blocks are not. Thus, it is necessary to satisfy the following
conditions:

S̃12 = −S̃T
21, S̃13 = −S̃T

31, S̃14 = −S̃T
41.

This implies that the interpolation operators are related to each other as follows:

IlRf toL =
∆

Rf
l

∆L
l

(
P
(1D)
L

)−1 (
IlLtoRf

)T
P
(1D)
R1

, l = 1, 2, f = 1, 2, 3, 4.

This property is denoted as the SBP preserving property because it leads to a
macro element differentiation matrix that is an SBP operator. The interpolation
operators from the left element to the right elements is constructed using an L2

projection approach such that

IlLtoRf
≡
(

Mξ̂l
Rf

)−1
Mξ̂l

LtoRf
,

Mξ̂l
Rf

(i, j) ≡
∫ ĤlRf

L̂lRf

L(i)

ξ̂l,Rf
L(j)

ξ̂l,Rf
dξ̂l, i, j = 1, . . . ,

(
pRf + 1

)
,

Mξ̂l
LtoRf

(i, j) ≡
∫ ĤlRf

L̂lRf

L(i)

ξ̂l,Rf
L(j)

ξ̂l,L
dξ̂l, i = 1, . . . ,

(
pRf + 1

)
j = 1, . . . , (pL + 1) ,

where L(i)

ξ̂l,Rf
and L(j)

ξ̂l,L
are the ith and jth Lagrange basis functions constructed

from the nodes of element Rf and L in the parent elements coordinates, respec-
tively. Now theorems on the accuracy of the interpolation operators are presented

Theorem 1 The interpolation operator IlLtoRf
is of degree min

(
N

1/3
L − 1, N

1/3
Rf
− 1
)

.

Proof The proof is standard and is not included for brevity. It follows by expand-
ing out the matrices and taking advantage of the interpolating property of the
Lagrangian basis functions (see, for example, Section 2.1.2 in Fredrich et al. [29]
(a mortar is introduced but conceptually the proofs are identical).

The interpolation operators IlRf toL individually are not polynomial exact, but
rather, their combination is.

Theorem 2 The combined interpolation from the right elements to the left ele-
ment is of degree min (NL − 2, NR1

− 2, . . . , NR4
− 2), if the norms are suboptimal,

i.e., degree 2p−1, otherwise it is of degree min (NL − 1, NR1
− 1, . . . , NR4

− 1). In
the five-element example used herein, the combined interpolation operator, acting
on some function U , is

IR1toLuR1
+ IR2toLuR2

+ IR3toLuR3
+ IR4toLuR4

,

where uRf is the vector containing the evaluation of the function U at the nodes
of the abutting surface of the Rf element and

IRf toL ≡ I2Rf toL ⊗ I3Rf toL, f = 1, 2, 3, 4.

14 David C. Del Rey Fernández et al.

Proof This proof follows in the same way as proven elsewhere, for example, see
Ref. [29].

The semidiscrete skew-symmetric split operator given in Eq. (13), discretized

using the macro element operators D̃ξ̂l , and metric terms, Ĵ,
[
J ∂ξl
∂xm

]
, leads to the

following scheme:

Ĵ
dũ

dt
+

1

2

3∑

l,m=1

am

(
D̃ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]
+

[
Ĵκ

∂ξ̂l
∂xm

]
D̃ξ̂l

)
ũ

− 1

2

3∑

l,m=1

am diag (ũ) D̃ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]
1̃ =

3∑

l,a=1

D̃ξ̂l

[
Ĉl,a

]
D̃ξ̂a ũ,

(20)

where

ũ ≡
[
uT
L ,u

T
R1
,uT

R2
,uT

R3
,uT

R4

]T
, Ĵ ≡ diag




ĴL
ĴR1

. . .

ĴR4


 ,

[
Ĵκ

∂ξ̂l
∂xm

]
≡




[
Ĵκ ∂ξ̂l

∂xm

]
L [
Ĵκ ∂ξ̂l

∂xm

]
R1

. . . [
Ĵκ ∂ξ̂l

∂xm

]
R4



,

[
Ĉl,a

]
≡

3∑

m=1

bm

[
Ĵκ

∂ξ̂l
∂xm

]
=




[
Ĉl,a

]
L [

Ĉl,m
]
R1

. . . [
Ĉl,m

]
R4



.

(21)

As was the case in Eq. (14), a necessary condition for stability is that the metric
terms satisfy the following discrete GCL conditions:

3∑

l=1

D̃ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]
1̃ = 0. (22)

Unfortunately, since D̃ξ̂1 is not a tensor product operator and therefore, does not
commute with the other derivative matrix operators, discrete metrics constructed
using the analytic formalism of Vinokur and Yee [59] or Thomas and Lombard [58]
will not in general satisfy the discrete GCL condition required in Eq. (22). This
means that, instead, the metric terms have to be constructed so that they directly
satisfy the GCL constraints.

Remark 1 The metric terms are assigned colors; e.g., the time-term Jacobian: Ĵ

or the volume metric terms:
[
Ĵκ ∂ξ̂l

∂xm

]
. Metric terms with common colors form

Title Suppressed Due to Excessive Length 15

a set that must be computed consistently. For example, the time-term Jacobian
and the volume metric Jacobian may not be computed in the same way. Another
important set of metrics are the surface metrics, which are introduced in the next
subsection.

4.3 Isolating the metric terms

The discrete GCL system, Eq. (22) is highly underdetermined and couples the
approximation of the metric terms in all five elements. In general, the resulting
GCL conditions for arbitrary h/p-refinement would couple large sets of elements,
making the solution of Eq. (22) difficult if not impossible. Note that the GCL
conditions originate from the spatial discretization of the skew-symmetric split-
ting of the convective terms. Thus, if the approximation for those terms can be
appropriately modified, then a set of element-local discrete GCL conditions can be
constructed, making the problem tractable again. This is precisely the approach
taken in Refs. [20,19,18] in the context of p-refinement/coarsening, and it is the
same procedure used herein.

Examining the volume terms for the approximation of the skew-symmetric
splitting highlights how to decouple the discrete GCL conditions:

P̃

(
D̃ξ̂1

[
Ĵκ

∂ξ̂1
∂xm

]
+

[
Ĵκ

∂ξ̂1
∂xm

]
D̃ξ̂1

)
=




A11 A12 A13 A14 A15

−AT
12 A22

−AT
13 A33

−AT
14 A44

−AT
15 A55




+

(
Ẽξ̂1

[
Ĵκ

∂ξ̂1
∂xm

]
+

[
Ĵκ

∂ξ̂1
∂xm

]
Ẽξ̂1

)
,

A11 ≡

{
SL
ξ̂1

[
Ĵκ

∂ξ̂1
∂xm

]

L

+

[
Ĵκ

∂ξ̂1
∂xm

]

L

SL
ξ̂1

}
,

A1f =
∆L

2∆
L
3

4





[
Ĵκ ∂ξ̂1

∂xm

]
L

(
eLN

(
e
Rf
1

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

)

+

(
eLN

(
e
Rf
1

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

) [
Ĵκ ∂ξ̂1

∂xm

]
Rf




,

Aff ≡



S

Rf

ξ̂1

[
Ĵκ

∂ξ̂1
∂xm

]

Rf

+

[
Ĵκ

∂ξ̂1
∂xm

]

Rf

S
Rf

ξ̂1



 , f = 1, 2, 3, 4.

(23)

The highlighted terms are responsible for the weak coupling in the discrete GCL
constraints. Note that these can be replaced with any design order quantities. The
approach taken here to decouple the discrete GCL conditions is to zero the terms

associated with the surface metrics on the element L, i.e., the terms
[
Ĵκ ∂ξ̂1

∂xm

]
L

and to specify the terms on the Rf elements, i.e.,
[
Ĵκ ∂ξ̂1

∂xm

]
Rf

.

16 David C. Del Rey Fernández et al.

(a) Original macro (non SBP) D̃ξ̂1
opera-

tor without coupling.

(b) Modified SBP macro element operator

D̃ξ̂1
.

(c) SBP macro element D̃ξ̂1
organized in

lexicographical order.

Fig. 2: Nonzero pattern of the various macro D̃ξ̂1 operators.

Remark 2 In contrast to the p-adaptation case [19,20,18], we do not use surface
metric terms from both sides of the element. This is because using surface metric
terms from the L element results in a coupled system of equations for the GCL
conditions in Eq. (22).

The action of the interface coupling is illustrated in Fig. 2. Using the above
approach, the discrete GCL conditions, Eq. (22), become (where contributions
from the boundary SATs have been ignored)

3∑

l=1

DL
ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]

L

1L =

∆
Rf
2 ∆

Rf
3

4

(
PL
)−1

{
RT
L

(
P
(1D)
L ⊗ P

(1D)
L

)
RL

[
Ĵκ

∂ξ̂1
∂xm

]

L

}
1L

− ∆
Rf
2 ∆

Rf
3

4

(
PL
)−1

4∑

f=1



RT

L

(
P
(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

)[
Ĵκ

∂ξ̂1
∂xm

]Γ̂

Rf

RRf



1Rf ,

(24)

Title Suppressed Due to Excessive Length 17

3∑

l=1

D
Rf

ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]

Rf

1Rf =

− ∆
Rf
2 ∆

Rf
3

4

(
PRf

)−1



RT

Rf

(
P
(1D)
Rf

⊗ P
(1D)
Rf

)
RRf

[
Ĵκ

∂ξ̂1
∂xm

]

Rf



1Rf

+
∆

Rf
2 ∆

Rf
3

4

(
PRf

)−1



RT

Rf

[
Ĵκ

∂ξ̂1
∂xm

]Γ̂

Rf

(
P
(1D)
Rf

I2LtoRf
⊗ P

(1D)
Rf

I3LtoRf

)
RL



1L,

(25)

where

RL ≡
(
eLN

)T
⊗ IL ⊗ IL, RRf ≡

(
e
Rf
1

)T
⊗ IRf ⊗ IRf .

The matrices
[
Ĵκ ∂ξ̂1

∂xm

]Γ̂
Rf

are of size N
2/3
Rf
× N

2/3
Rf

and their diagonal elements

are approximations to the metrics on the surface nodes of element Rf at the
shared interface. In order to decouple the five systems of equations in Eqs. (24)

and (25), the terms in
[
Ĵκ ∂ξ̂1

∂xm

]Γ̂
Rf

need to be specified by, for example, using

the analytic metrics, which is the approach taken in this paper. For later use,
we introduce notation for the macro element D̃l,m, which is the macro element

operator constructed as described above for the metric terms Ĵκ ∂ξ̂l
∂xm

.

The next section reviews how to construct the metrics so that the discrete
GCL conditions in Eqs. (24) and (25) are satisfied.

The presentation using the macro elements helps to simplify proofs and high-
light the main issues involved in developing appropriate coupling procedures at
the nonconforming interface. However, to give further insight into how to imple-
ment the algorithm in a computer code, here, we explicitly unroll the macro SBP
operators into the discretization on the five elements involved at the interface (we
give further details on implementation in Appendix A).

18 David C. Del Rey Fernández et al.

On the L element, the discretization reads as

ĴL
duL

dt
+

1

2

3∑

l,m=1

(
DL
ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]

L

+

[
Ĵκ

∂ξ̂l
∂xm

]

L

DL
ξ̂l

)
uL =

3∑

l,a=1

DL
ξ̂l

[
Ĉl,a

]
L
θLa

+P−1
L

3∑

m=1

{(
eLN1

(
eLN1

)T
⊗ P

(1D)
L ⊗ P

(1D)
L

)[
Ĵκ

∂ξ̂1
∂xm

]

L

uL

−
(
eLN1

(
e
Rf
11

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

)[
Ĵκ

∂ξ̂1
∂xm

]

Rf

uRf





+
1

2
P−1
L

3∑

a=1

{(
eLN1

(
eLN1

)T
⊗ P

(1D)
L ⊗ P

(1D)
L

)[
Ĉ1,a

]
L
θLa

−
4∑

f=1

(
eLN1

(
e
Rf
11

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

)[
Ĉ1,a

]
Rf
θ
Rf
a





+ SATL,

(26)

where SATL contains the contributions from inviscid and viscous SATs on the
remaining faces of element L. Moreover, the auxiliary variables θLa and θ

Rf
a have

been introduced. The first is constructed from

θL = DL
ξ̂l
uL −

1

2
P−1
L

3∑

a=1

{(
eLN1

(
eLN1

)T
⊗ P

(1D)
L ⊗ P

(1D)
L

)
uL

−
4∑

f=1

(
eLN1

(
e
Rf
11

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

)
uRf



 .

(27)

The discretization on the Rf elements reads

ĴRf
duRf

dt
+

1

2

3∑

l,m=1


D

Rf

ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]

Rf

+

[
Ĵκ

∂ξ̂l
∂xm

]

Rf

D
Rf

ξ̂l


uRf =

3∑

l,a=1

D
Rf

ξ̂l

[
Ĉl,a

]
Rf
θ
Rf
a

−P−1
Rf

3∑

m=1





(
e
Rf
11

(
e
Rf
11

)T
⊗ P

(1D)
Rf

⊗ P
(1D)
Rf

)[
Ĵκ

∂ξ̂1
∂xm

]

Rf

uRf

−
(
e
Rf
11

(
eLN1

)T
⊗ P

(1D)
Rf

I2LtoRf
⊗ P

(1D)
Rf

I3LtoRf

)[
Ĵκ

∂ξ̂1
∂xm

]

L

uL

}

+
1

2
P−1
Rf

3∑

a=1

{(
e
Rf
11

(
e
Rf
11

)T
⊗ P

(1D)
Rf

⊗ P
(1D)
Rf

)[
Ĉ1,a

]
Rf
θ
Rf
a

−
(
e
Rf
11

(
eLN1

)T
⊗ P

(1D)
Rf

I2LtoRf
⊗ P

(1D)
Rf

I3LtoRf

)[
Ĉ1,a

]
L
θLa

}

+ SATRf ,

(28)

Title Suppressed Due to Excessive Length 19

where SATRf contains the contributions from inviscid and viscous SATs on the
remaining faces of element Rf , and

θRf = D
Rf

ξ̂l
uRf +

1

2
P−1
Rf

3∑

a=1

{(
e
Rf
11

(
e
Rf
11

)T
⊗ P

(1D)
Rf

⊗ P
(1D)
Rf

)
uRf

−
(
e
Rf
11

(
eLN1

)T
⊗ P

(1D)
Rf

I2LtoRf
⊗ P

(1D)
Rf

I3LtoRf

)
uL

}
.

(29)

4.4 Metric solution mechanics

This section details the approximation of the metric terms so that entropy stability
and free-stream preservation are maintained. There are two sets of metrics that
need to be approximated, the volume metrics and the surface metrics. What needs
to be satisfied are the discrete GCL equations (24) and (25), which are recast
below in a form that is more convenient for developing a solution procedure. Thus,
multiplying the discrete GCL constraints by −1, using the SBP property Q =
−QT + E, and simplifying the expressions gives

3∑

l=1

(
QL
ξ̂l

)T
[
Ĵκ

∂ξ̂l
∂xm

]

L

1L =

∆
Rf
2 ∆

Rf
3

4

4∑

f=1



RT

L

(
P
(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

)[
Ĵκ

∂ξ̂1
∂xm

]Γ̂

Rf

RRf



1Rf ,

(30)

3∑

l=1

Q
Rf

ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]

Rf

1Rf =

− ∆
Rf
2 ∆

Rf
3

4

(
PRf

)−1



RT

Rf

[
Ĵκ

∂ξ̂1
∂xm

]Γ̂

Rf

(
P
(1D)
Rf

I2LtoRf
⊗ P

(1D)
Rf

I3LtoRf

)
RL



1L,

(31)

where IRf is an identity matrix of size N
1/3
Rf
×NRf and NRf is the total number

of nodes in element Rf .
Note that the contributions from the Eξ̂l from the left-hand side (i.e., coming

from the step Q = −QT + E) related to the boundaries of the macro element are
ignored. These contributions interact with the boundary SATs in the same way as
the interface.

The metric terms in Eqs. (30) and (31) are set by solving a strictly con-
vex quadratic optimization problem, based on the algorithm proposed in Crean
et al. [14] (see also Refs. [20,18]). Here the procedure is exemplified in terms of
the discrete GCL system on the L element:

min
aL
m

1

2

(
aL
m − aL

m, target

)T (
aL
m − aL

m, target

)
,

subject to MLaL
m = cLm, m = 1, 2, 3,

(32)

20 David C. Del Rey Fernández et al.

where the vectors aL
m and aL

m, target are the optimized and target volume met-
ric terms, respectively. Herein, the analytic metric terms are the target volume
metrics. Furthermore,

(
aL
m

)T
≡ 1T

L

[[
Ĵκ

∂ξ̂1
∂xm

]

L

,

[
Ĵκ

∂ξ̂2
∂xm

]

L

,

[
Ĵκ

∂ξ̂3
∂xm

]

L

]
,

ML ≡
[(

QL
ξ̂1

)T
,
(

QL
ξ̂2

)T
,
(

QL
ξ̂3

)T]
,

and

cLm ≡
∆

Rf
2 ∆

Rf
3

4

4∑

f=1



RT

L

(
P
(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

)[
Ĵκ

∂ξ̂1
∂xm

]Γ̂

Rf

RRf



1Rf ,

with aL
m of size 3NL × 1, ML of size NL × 3NL, and cLm of size NL × 1, where NL

is the total number of nodes in element L. The optimal solution, in the Cartesian
2-norm, is given by (see Proposition 1 in Crean et al. [14])

aL
m = aL

m, target −
(

ML
)† (

MLaL
m, target − cLm

)
, (33)

where
(
ML
)†

is the Moore–Penrose pseudoinverse of ML. This pseudoinverse is

computed using a singular value decomposition of ML

ML = ULΣL
(

VL
)T

,
(

ML
)†

= VL
(

ΣL
)† (

UL
)T

.

The unitary matrix UL is of size NL ×NL, ΣL is a diagonal matrix of size NL ×
NL containing the singular values of ML, and

(
VL
)T

is of size NL × 3NL with

orthonormal rows. The optimal solution aL
m given by Eq. (33) satisfies the discrete

GCL relations (30) if the following constraint is satisfied:

1T
Lc

L
m = 0. (34)

The constraint (34) is a discrete approximation to the integral of the GCL equa-
tions over the domain Ω̂L, i.e.,

1T
Lc

L
m ≈

∫

Ω̂L

3∑

l=1

∂

∂ξ̂l

(
Ĵκ

∂ξ̂l
∂xm

)
dΩ̂ =

∮

Γ̂L

3∑

l=1

Ĵκ
∂ξ̂l
∂xm

nξ̂ldΓ̂ = 0. (35)

In fact, our approach is to specify the surface metric terms
[
Ĵκ ∂ξ̂l

∂xm

]Γ̂
Rf

such that

1T
Lc

L
m is exactly equal to the surface integral term on the right-hand side of Eq.

(35).
The constraint Eq. (34) arises because ML has one zero singular value associ-

ated with the constant singular vector. This implies that in order for Eq. (30) to
have an exact solution, cLm must be orthogonal to the constant vector (see Ref.
[20] for a complete discussion). The next theorem is one of the main results of this
work and gives the conditions on the analytic metric terms so that the constraint
Eq. (34) is satisfied.

Title Suppressed Due to Excessive Length 21

Theorem 3 If the analytic metric terms used to populate
[
Ĵκ ∂ξ̂l

∂xm

]Γ̂
Rf

are at most

the degree of the weakest cubature rule involved in the nonconforming interface,
then the constraints Eq. (34) are satisfied.

Proof The proof follows from the accuracy of the interpolation operators and the
associated cubature rules interacting at the nonconforming interface.

Thus far, we have concentrated on nonconforming faces. For nonconforming ele-
ments (i.e., elements that have at least one nonconforming face), on conforming
faces the surface metric terms that appear in the discrete GCL Eqs. (30) and (31)
are taken as the surface metric terms of the adjoining face. The metric terms of
the adjoining face are approximated using a standard approach, such as that of
Vinokur and Yee [59] or Thomas and Lombard [58], and Theorem 2 of Ref. [20]
guarantees that metric terms computed in this way satisfy the constraint Eq. (34).

5 Nonlinearly stable schemes: Viscous Burgers’ equation

The general h/p-nonconforming machinery presented in the previous section will
be applied to the compressible Navier–Stokes equations in Section 6. However, in
order for the resulting discretization to have the telescoping property, and there-
fore nonlinear stability, special nonlinear approximations are required that lead
to this property. In this section, the required Hadamard derivative formulation is
exemplified using the simple viscous Burgers’ equation.

The viscous Burgers’ equation and its canonically split form are

∂U
∂t

+
∂

∂x1

(
U2

2

)
=
∂2U
∂x21

;
∂U
∂t

+
1

3

∂

∂x1

(
U2
)

+
U
3

∂U
∂x1

=
∂2U
∂x21

, (36)

where, as in the convection-diffusion equation, the splitting is on the inviscid terms.
Applying an energy analysis to the split form of Eq. (36) gives (for details, see,
for example, Ref. [10])

1

2

d‖U‖2

dt
+

∮

Γ

U3

3
nx1dΓ =

∮

Γ

U ∂U
∂x1

nx1dΓ −
∫

Ω

(
∂U
∂x1

)2

dΩ, ‖U‖2 ≡
∫

Ω

U2dΩ.

(37)
The semidiscrete proof of stability that will be constructed shortly follows the

continuous proof in a discrete sense such that, when contracted by uTP, i.e., the
discrete analogue of multiplying by the solution and integrating in space, the result
is the sum of spatial terms that telescope to the boundaries.

Ignoring the imposition of boundary conditions (i.e., SATs) and concentrating
on a single element, then the discretization of Eq. (36) with SBP operators is given
as

du

dt
+

1

3
Dx1 diag (u)u+

1

3
diag (u) Dx1u = Dx1Θ, Θ ≡ Dx1u. (38)

Multiplying Eq. (38) by uTP results in

1

2

duTPu

dt
+

1

3

(
u3(N)− u3(1)

)
= uTEx1Dx1u− u

TDT
x1

PDx1u, (39)

22 David C. Del Rey Fernández et al.

where each term mimics the corresponding term in Eq. (37). Furthermore, Eq. (39)
has the telescoping property, i.e., the remaining terms are at the boundaries.

Notice that the key to obtaining a telescoping semidiscrete form is the careful
discretization of the inviscid terms (in this case using a canonical split form),
whereas the viscous terms were directly discretized in strong conservation form.

The discrete inviscid terms in Eq. (38) can be recast using the Hadamard
derivative formalism. The equivalence between the split form and he Hadamard
derivative operators is given as follows

2Dx1 ◦ Fx1 (u,u) 11 ↔ 1

3
Dx1 diag (u)u+

1

3
diag (u) Dx1u . (40)

Two components are used to construct the Hadamard derivative operator: first,
an SBP derivative operator, and second, a two-point flux function related to the
inviscid flux vector being discretely differentiated. The Hadamard derivative op-
erator combines these two components such that two-point fluxes are constructed
between the center point and all other points of dependency within the SBP sten-
cil. The SBP telescoping property [26] results from precise local cancellation of
spatial terms and can then be extended directly to nonlinear operators.

In the case of the Burgers’ equation, the two-point flux function that results
in an equivalence between the split form and the Hadamard derivative operator
is [57,10]

fscxm

(
u(i),u(j)

)
≡

{(
u(i)

)2
+ u(i)u(j) +

(
u(j)

)2}

6
,

where u(i) and u(j) are the ith and jth components of u. For the purpose of
demonstration, a simple SBP operator constructed on the LGL nodes (−1, 0, 1) is
used:

Dx1 =




−3
2 2 −1

2

−1
2 0 1

2

1
2 −2 3

2


 .

The two argument Hadamard matrix flux, Fxm (u,u) is given as

Fxm (u,u) =



(u(1))
2

2

(u(1))
2
+u(1)u(2)+(u(2))

2

6

(u(1))
2
+u(1)u(3)+(u(3))

2

6

(u(2))
2
+u(2)u(1)+(u(1))

2

6

(u(2))
2

2

(u(2))
2
+u(2)u(3)+(u(3))

2

6

(u(3))
2
+u(3)u(1)+(u(1))

2

6

(u(3))
2
+u(3)u(2)+(u(2))

2

6

(u(3))
2

2



.

Thus,

Dx1 ◦ Fxm (u,u) 1 =



− 3
2

(u(1))
2

2
2
(u(1))

2
+u(1)u(2)+(u(2))

2

6
− 1

2

(u(1))
2
+u(1)u(3)+(u(3))

2

6

− 1
2

(u(2))
2
+u(2)u(1)+(u(1))

2

6
0 1

2

(u(2))
2
+u(2)u(3)+(u(3))

2

6

1
2

(u(3))
2
+u(3)u(1)+(u(1))

2

6
−2

(u(3))
2
+u(3)u(2)+(u(2))

2

6
3
2

(u(3))
2

2







1

1

1



.

Title Suppressed Due to Excessive Length 23

The equivalence between the two approaches can be determined via inspection.

The general notation necessary for discretizing the inviscid fluxes of the com-
pressible Navier–Stokes equations is now detailed. Consider the discretization of
the derivative of a flux vector Fxm in the xm Cartesian direction. As for the Burg-
ers’ equation, the key components are an SBP matrix difference operator, Dxm ,
and a two argument matrix flux function, Fxm (uκ,ur), which is constructed from
diagonal matrices and is defined blockwise as

(Fxm (uκ,ur)) (e(i− 1) + 1 : ei, e(j − 1) + 1 : ej) ≡ diag
(
fscxm

(
u(i)
κ ,u(j)

r

))
,

u(i)
κ ≡ uκ (e(i− 1) + 1 : ei) , u(j)

r ≡ ur (e(j − 1) + 1 : ej) ,

i = 1 . . . , N3
κ, j = 1, . . . , N3

r ,

where e is the number of equations in the system of PDEs. In the context of the
compressible Navier–Stokes equations, e = 5 and the two argument matrix flux
function is of size

(
eN3

κ

)
×
(
eN3

r

)
, where eN3

κ and eN3
r are the total number of

entries in the vectors uκ and ur corresponding the solution variables in elements κ

and r, respectively. Therefore, u
(i)
κ is the vector of the e solution variables evaluated

at the ith node. The vectors fscxm

(
u
(i)
κ ,u

(j)
r

)
are constructed from two-point flux

functions that are symmetric in their arguments,
(
u
(i)
κ ,u

(j)
r

)
, and consistent, i.e.,

fscxm

(
u(i)
κ ,u(j)

r

)
= fscxm

(
u(j)
r ,u(i)

κ

)
, fscxm

(
u(i)
κ ,u(i)

κ

)
= Fxm

(
u(i)
κ

)
,

where Fxm is the inviscid flux vector in the xm Cartesian direction. With the no-

tation defined, the Hadamard differentiation operator for the inviscid flux,
∂Fxm

∂xm
,

is constructed as

2Dxm ◦ Fxm (qκ, qκ) 1κ ≈
∂Fxm
∂xm

(xκ) ,

where xκ is the vector of vectors containing the nodal coordinates. The resulting
approximation has equivalent order properties as constructing an approximation to
the derivative of the flux vector directly using an SBP operator Dxm (see Theorem
1 in Crean et al. [14]).

6 Application to the compressible Navier–Stokes equations

Herein, the nonconforming algorithm presented in Section 4 is combined with the
mechanics presented in Section 5 to construct an entropy conservative discretiza-
tion of the compressible Navier–Stokes equations for arbitrary h/p-nonconforming
meshes. First, the continuous equations and entropy analysis are reviewed in Sec-
tion 6.1. Second, in Section 6.2, the semidiscrete algorithm is presented and ana-
lyzed.

24 David C. Del Rey Fernández et al.

6.1 Review of the continuous entropy analysis

The entropy stable algorithm is constructed by discretizing the skew-symmetric
form of the compressible Navier–Stokes equations, with the viscous flux recast in
terms of entropy variables. This form of the equations is given as

Jκ
∂Qκ
∂t

+
1

2

3∑

l,m=1

(
∂

∂ξl

(
Jκ

∂ξl
∂xm
FIxm

)
+ Jκ

∂ξl
∂xm

∂FIxm
∂ξl

)

− 1

2

3∑

l,m=1

FIxm
∂

∂ξl

(
Jκ

∂ξl
∂xm

)
=

3∑

l,a=1

∂

∂ξl

(
Ĉl,a

∂W
∂ξa

)
,

(41)

where the last set of terms on the left-hand side are zero by the GCL relations Eq.
(6). Furthermore,

Ĉl,a = Jκ
∂ξl
∂xm

3∑

m,j=1

Cm,j
∂ξa
∂xj

, (42)

where Q is the vector of conserved variables, and FIxm is the inviscid flux vector
in the xm direction. The vector of conserved variables is given by

Q = [ρ, ρU1, ρU2, ρU3, ρE]T ,

where ρ denotes the density, U = [U1,U2,U3]T is the velocity vector, and E is the
specific total energy. The inviscid fluxes are given as

FIxm = [ρUm, ρUmU1 + δm,1P, ρUmU2 + δm,2P,

ρUmU3 + δm,3P, ρUmH]T ,

where P is the pressure, H is the specific total enthalpy and δi,j is the Kronecker
delta.

The necessary constituent relations are

H = cPT +
1

2
UTU , P = ρRT , R =

Ru
Mw

,

where T is the temperature, Ru is the universal gas constant, Mw is the molecular
weight of the gas, and cP is the specific heat capacity at constant pressure. Finally,
the specific thermodynamic entropy is given as

s =
R

γ − 1
log

(
T
T∞

)
−R log

(
ρ

ρ∞

)
, γ =

cp
cp −R

,

where T∞ and ρ∞ are the reference temperature and density, respectively.

The viscous fluxes, FVxm , have been recast in terms of the entropy variables,
W ≡ ∂S/∂Q, where S is the entropy function S ≡ −ρs:

FVxm =
3∑

j=1

Cm,j
∂W
∂xj

. (43)

Title Suppressed Due to Excessive Length 25

The viscous fluxes written in components are given as

FVxm =

[
0, τ1,m, τ2,m, τ3,m,

3∑

i=1

τi,mUi − κ
∂T
∂xm

]T
, (44)

and the viscous stresses are defined as

τi,j = µ

(
∂Ui
∂xj

+
∂Uj
∂xi
− δi,j

2

3

3∑

n=1

∂Un
∂xn

)
, (45)

where µ(T) is the dynamic viscosity and κ(T) is the thermal conductivity (not to
be confused with the choice of parameter for element numbering).

The compressible Navier–Stokes equations have a convex extension, that when
integrated over the physical domain, Ω, depends only on the boundary data and
negative semidefinite dissipation terms. This convex extension depends on an en-
tropy function, S, and it is used to prove the stability in the L2 norm. Here, a
brief review of the entropy stability analysis is given. A detailed presentation is
available, for instance, in Refs. [15,52,10].

Under the assumption that the entropy function S is convex, which is guaran-
teed if ρ, T > 0, then the vector of entropy variables,W, simultaneously contracts
all of the inviscid flux as follows:

WT ∂FIxm
∂ξl

=
∂S
∂Q

∂FIxm
∂Q

∂Q
∂ξl

=
∂Fxm
∂Q

∂FIxm
∂Q , l, m = 1, 2, 3, (46)

where Fxm is the entropy flux in the xm direction.
The entropy stability analysis proceeds by first multiplying (contracting) Eq. (41)

by the transpose of the entropy variables,WT,

I︷ ︸︸ ︷
JκWT ∂Qκ

∂t
+

1

2

3∑

l,m=1




II︷ ︸︸ ︷
WT ∂

∂ξl

(
Jκ

∂ξl
∂xm
FIxm

)
+

III︷ ︸︸ ︷
Jκ

∂ξl
∂xm
WT ∂FIxm

∂ξl


 =

3∑

l,a=1

IV︷ ︸︸ ︷
WT ∂

∂ξl

(
Ĉl,a

∂W
∂ξa

)
.

(47)

With the help of Eq. (46) and the product rule, the terms I−IV are now simplified:

I ≡ JκWT ∂Qκ
∂t

= Jκ
∂S
∂Q

∂Qκ
∂t

= Jκ
∂Sκ
∂t

, (48)

II ≡WT ∂

∂ξl

(
Jκ

∂ξl
∂xm
FIxm

)
= Jκ

∂ξl
∂xm
WT ∂FIxm

∂ξl
+WTFIxm

∂

∂ξl

(
Jκ

∂ξl
∂xm

)

= Jκ
∂ξl
∂xm

∂Fxm
∂ξl

+WTFIxm
∂

∂ξl

(
Jκ

∂ξl
∂xm

)
,

(49)

III ≡ Jκ
∂ξl
∂xm
WT ∂FIxm

∂ξl
= Jκ

∂ξl
∂xm

∂Fxm
∂ξl

, (50)

26 David C. Del Rey Fernández et al.

IV ≡WT ∂

∂ξl

(
Ĉl,a

∂W
∂ξa

)
=

∂

∂ξl

(
WTĈl,a

∂W
∂ξa

)
− ∂WT

∂ξl
Ĉl,a

∂W
∂ξa

. (51)

Substituting Eqs. (48) through (51) into Eq. (47) results in

Jκ
∂Sκ
∂t

+
3∑

l,m=1

Jκ
∂ξl
∂xm

∂Fxm
∂ξl

+
WT

2

3∑

m=1

FIxm
��

���
���

�:0 via GCL(6)3∑

l=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

)
=

3∑

l,a=1

{
∂

∂ξl

(
WTĈl,a

∂W
∂ξa

)
− ∂WT

∂ξl
Ĉl,a

∂W
∂ξa

}
.

(52)

Bringing the metric terms within the derivative on the term Jκ ∂ξl
∂xm

∂Fxm
∂ξl

and
using the product rule results in

Jκ
∂Sκ
∂t

+
3∑

l,m=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

Fxm
)
−

3∑

m=1

Fxm
���

���
���:

0 via GCL (6)
3∑

m=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

)
=

3∑

l,a=1

{
∂

∂ξl

(
WTĈl,a

∂W
∂ξa

)
− ∂WT

∂ξl
Ĉl,a

∂W
∂ξa

}
.

(53)

Rearranging Eq. (53) and expanding the dissipation term yields

Jκ
∂Sκ
∂t

=
3∑

l=1

∂

∂ξl

(
−

3∑

m=1

Jκ
∂ξl
∂xm

Fxm +
3∑

a=1

(
WTĈl,a

∂W
∂ξa

))

−



∂W
∂ξ1
∂W
∂ξ2
∂W
∂ξ3




T 


Ĉ1,1 Ĉ1,2 Ĉ1,3

ĈT
1,2 Ĉ2,2 Ĉ2,3

ĈT
1,3 ĈT

2,3 Ĉ3,3




︸ ︷︷ ︸
≡Ĉ



∂W
∂ξ1
∂W
∂ξ2
∂W
∂ξ3




︸ ︷︷ ︸
≡Ŵ

,
(54)

where the matrix Ĉ is symmetric semidefinite (see Ref. [24] for details).

Integrating Eq. (54) in space and using integration by parts gives

∫

Ω̂κ

Jκ
∂Sκ
∂t

dΩ̂ ≤
3∑

l=1

∮

Γ̂κ

(
−

3∑

m=1

Jκ
∂ξl
∂xm

Fxm +
3∑

a=1

(
WTĈl,a

∂W
∂ξa

))
nξldΓ̂ .

(55)

An L2 bound on the solution is derived from inequality Eq. (55) by integrating
in time and assuming 1) nonlinearly well-posed boundary and initial conditions,
and 2) positivity of temperature and density. Then, the result can be turned into
a bound on the solution in terms of the data of the problem [15,52].

Title Suppressed Due to Excessive Length 27

6.2 An h/p-nonconforming algorithm

The skew-symmetrically split form of the compressible Navier–Stokes equations (41)
is discretized by combining the macro element SBP operator in Section 4.2 with
the nonlinear mechanics presented in Section 5. Thus, the discretization of Eq.
(41) over the macro element is given as

Ĵ
dq̃

∂t
+

3∑

l,m=1

D̃l,m ◦ Fxm (q̃, q̃) 1̃

− 1

2

3∑

l,m=1

diag
(
fIxm

)
D̃ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]
1̃ =

3∑

l,a=1

D̃ξ̂l

[
Ĉl,a

]
D̃ξ̂aw̃,

q̃ ≡
[
qTL , q

T
R1
, . . . , qTR4

]T
, w̃ ≡

[
wT

L ,w
T
R1
, . . . ,wT

R4

]T
,

(56)

where fIxm is a vector of vectors constructed by evaluating FIxm at the mesh nodes.
Note that the factor of 1

2 on the skew-symmetric inviscid volume terms has been
absorbed as a result of using the nonlinear operator, e.g., 2Dξl ◦Fxm (qκ, qκ) 1κ ≈
∂Fxm

∂ξl
(ξκ). Furthermore, the flux function matrix, Fxm (q̃, q̃), is constructed us-

ing a two-point flux function, fscxm

(
q̃(i), q̃(i)

)
, that satisfies the Tadmor’s shuffle

condition [57]

(
w̃(i) − w̃(j)

)T
fscxm

(
q̃(i), q̃(i)

)
= ψ̃(i)

xm − ψ̃
(j)
xm . (57)

The D̃l,m operators are constructed from the scalar conservation law operators
developed in Section (4) by tensoring them with an identity matrix, I5, to accom-
modate the system of five equations. For example,

DL
ξ̂1
≡ Dξ̂1 ⊗ I5, D

L
ξ̂1 ≡

2

∆L
1

D
(1D)
L ⊗ IL ⊗ IL.

Similar to the linear stability, entropy stability necessitates that the last set of
terms on the left-hand side of Eq. (56) be zero and leads to the same set of
discrete GCL conditions.

The semidiscrete entropy analysis follows the continuous analysis in a one-to-
one fashion. In order to simplify the derivation, the following matrices are intro-
duced:

D̃m ≡
3∑

l=1

D̃l,m, Q̃m ≡ P̃D̃m, Ẽm ≡ Q̃m + Q̃T
m.

Assuming that the discrete GCL conditions are satisfied, Eq. (56) becomes

Ĵ
dq̃

∂t
+

3∑

m=1

D̃m ◦ Fxm (q̃, q̃) 1̃ =
3∑

l,a=1

D̃ξ̂l

[
Ĉl,a

]
D̃ξ̂aw̃. (58)

28 David C. Del Rey Fernández et al.

Multiplying Eq. (58) by w̃TP̃ (the discrete analogue of multiplying by WT and
integrating over the domain) yields

Ĵw̃TP̃
dq̃

∂t
+

3∑

m=1

w̃Q̃m ◦ Fxm (q̃, q̃) 1̃ =
3∑

l,a=1

w̃TQ̃ξ̂l

[
Ĉl,a

]
D̃ξ̂aw̃. (59)

Taking the transpose of one half of the volume term on the left-hand side of
Eq. (59), using the SBP property Q = −QT + E, and the symmetry of the two-
point flux function matrix, results in

Ĵw̃TP̃
dq̃

∂t
+

1

2

3∑

m=1

(
w̃Q̃m ◦ Fxm (q̃, q̃) 1̃− 1̃TQ̃m ◦ Fxm (q̃, q̃)T w̃

+1̃TẼm ◦ Fxm (q̃, q̃)T w̃
)

=

3∑

l,a=1

w̃TẼξ̂l

[
Ĉl,a

]
D̃ξ̂aw̃ −

3∑

l,a=1

w̃TD̃T
ξ̂l

P̃
[
Ĉl,a

]
D̃ξ̂aw̃.

(60)

To further reduce the left-hand side terms requires the following theorem (this is
Theorem 8 in Ref. [18] and the proof is given in Appendix D of that document):

Theorem 4 Consider the matrix of A of size Nκ × Nr with a tensor extension
A ≡ A ⊗ I5, and a two argument matrix flux function Fxm (qκ, qr) constructed

from the two-point flux function fscxm

(
q
(i)
κ , q

(j)
r

)
that satisfies the Tadmor’s shuffle

condition

(
w(i)
κ −w(j)

r

)T
fscxm

(
q(i)κ , q(j)r

)
= (ψκxm)(i) − (ψrxm)(j)

and is symmetric, i.e., fscxm

(
q
(i)
κ , q

(j)
r

)
= fscxm

(
q
(j)
r , q

(i)
κ

)
, then

wT
κ (A) ◦ Fxm (qκ, qr) 1r − 1T

κA ◦ Fxm (qκ, qr)wr = (ψκxm)T A1r − 1
T
κAψrxm .

Proof The proof is given in Ref. [18] and we reproduce it here for completeness.

wT
κ (A) ◦ Fxm (qκ, qr) 1r − 1T

κA ◦ Fxm (qκ, qr)wr =

N3
κ∑

i=1

N3
r∑

j=1

{
A(i, j)

(
w(i)
κ

)T
fscxm

(
q(i)κ , q(j)r

)
− A(i, j)

(
w(j)
r

)T
fscxm

(
q(i)κ , q(j)r

)}
=

N3
κ∑

i=1

N3
r∑

j=1

{
A(i, j)

((
w(i)
κ

)T
−
(
w(j)
r

)T)
fscxm

(
q(i)κ , q(j)r

)}
=

N3
κ∑

i=1

N3
r∑

j=1

A(i, j)
(

(ψκxm)(i) − (ψrxm)(j)
)

=

(ψκxm)T A1r − 1
T
κAψrxm .

Title Suppressed Due to Excessive Length 29

Applying Theorem 4 to the volume terms on the left-hand side of Eq. (60) yields

Ĵw̃TP̃
dq̃

∂t
+

1

2

3∑

m=1

{(
ψ̃xm

)T
Q̃m1 − 1

T
Q̃mψ̃xm + 1̃TẼm ◦ Fxm (q̃, q̃)T w̃

}
=

3∑

l,a=1

w̃TẼξ̂l

[
Ĉl,a

]
D̃ξ̂aw̃ −

3∑

l,a=1

w̃TD̃T
ξ̂l

P̃
[
Ĉl,a

]
D̃ξ̂aw̃.

(61)

The term Q̃m1 is zero by the discrete GCL conditions and the consistency of the

derivative operator (D1 = 0) and for the same reasons 1
T

Q̃m = 1
T

Ẽm. Therefore,
after some rearrangements Eq. (62) reduces to

Ĵw̃TP̃
dq̃

∂t
=− 1

2

3∑

m=1

{
−1

T
Ẽmψ̃xm + 1̃TẼm ◦ Fxm (q̃, q̃)T w̃

}

+
3∑

l,a=1

w̃TẼξ̂l

[
Ĉl,a

]
D̃ξ̂aw̃ −

3∑

l,a=1

w̃TD̃T
ξ̂l

P̃
[
Ĉl,a

]
D̃ξ̂aw̃.

(62)

The right-hand side of Eq. (62) contains surface terms (those constructed from the
E matrices) and viscous dissipation terms (the last set of terms). The surface terms
can be decomposed into the contributions of the separate surfaces of the element
(nodewise). The entropy conservation of the algorithm follows immediately for
periodic problems because these terms would cancel out with the contributions
from the coupling SATs. For general boundary conditions, appropriate SATs need
to be constructed so that an entropy inequality or equality is attained (see, for
example, [44,53,16]).

As in the section dedicated to the convection-diffusion equation, here we present
the elementwise formulation of the discretization (in Appendix B, further details
are provided to help the reader in the implementation of the algorithm). On the
L element, the discretization reads

ĴL
duL

dt
+

3∑

l,m=1

(
DL
ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]

L

+

[
Ĵκ

∂ξ̂l
∂xm

]

L

DL
ξ̂l

)
◦ Fxm (uL,uL) 1L =

3∑

l,a=1

DL
ξ̂l

[
Ĉl,a

]
θLa

+ P−1
L

3∑

l=1

{(
eLN

(
eLN

)T
⊗ P

(1D)
L ⊗ P

(1D)
L ⊗ I5

)
◦ Fxm (uL,uL) 1L

−
4∑

f=1

(
eLN

(
e
Rf
1

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL ⊗ I5

)
◦ Fxm

(
uL,uRf

)
1Rf





− 1

2
P−1
L

3∑

l=1

{(
eLN

(
eLN

)T
⊗ P

(1D)
L ⊗ P

(1D)
L ⊗ I5

)
θLa

−
4∑

f=1

(
eLN

(
e
Rf
1

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL ⊗ I5

)
θ
Rf
a



+ SAT 1

L ,

(63)

30 David C. Del Rey Fernández et al.

where,

θLa = DL
ξ̂a
wL

− 1

2
P−1
L

3∑

l=1

{(
eLN

(
eLN

)T
⊗ P

(1D)
L ⊗ P

(1D)
L ⊗ I5

)
wL

−
4∑

f=1

(
eLN

(
e
Rf
1

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL ⊗ I5

)
wRf



+ SAT 2

L ,

(64)

and SAT 1
L and SAT 2

L contain the SATs for the remaining five faces on element
L.

Similarly, on the Rf elements

ĴRf
duRf

dt
+

3∑

l,m=1


D

Rf

ξ̂l

[
Ĵκ

∂ξ̂l
∂xm

]

Rf

+

[
Ĵκ

∂ξ̂l
∂xm

]

Rf

D
Rf

ξ̂l


 ◦ Fxm

(
uRf ,uRf

)
1Rf =

3∑

l,a=1

D
Rf

ξ̂l

[
Ĉl,a

]
θ
Rf
a

− P−1
Rf

3∑

l=1

{(
e
Rf
1

(
e
Rf
1

)T
⊗ P

(1D)
Rf

⊗ P
(1D)
Rf

⊗ I5

)
◦ Fxm

(
uRf ,uRf

)
1Rf

−
4∑

f=1

(
e
Rf
1

(
eLN

)T
⊗ P

(1D)
Rf

I2LtoRf
⊗ P

(1D)
R I3LtoRf

⊗ I5

)
◦ Fxm

(
uRf ,uL

)
1L





− 1

2
P−1
Rf

3∑

l=1

{(
e
Rf
1

(
e
Rf
1

)T
⊗ P

(1D)
Rf

⊗ P
(1D)
Rf

⊗ I5

)
θ
Rf
a

−
4∑

f=1

(
e
Rf
1

(
eLN

)T
⊗ P

(1D)
Rf

I2LtoRf
⊗ P

(1D)
Rf

I3LtoRf
⊗ I5

)
θLa



+ SAT 1

Rf ,

(65)

where,

θ
Rf
a = D

Rf

ξ̂a
wRf

− 1

2
P−1
Rf

3∑

l=1

{(
e
Rf
1

(
e
Rf
1

)T
⊗ P

(1D)
Rf

⊗ P
(1D)
Rf

⊗ I5

)
wRf

−
(
e
Rf
1

(
eLN

)T
⊗ P

(1D)
Rf

I2LtoRf
⊗ P

(1D)
Rf

I3LtoRf
⊗ I5

)
wL

}
+ SAT 2

Rf ,

(66)

and SAT 1
Rf and SAT 2

Rf contain the SATs for the remaining five faces on element
Rf .

Title Suppressed Due to Excessive Length 31

7 Interface dissipation and boundary SATs

In order to render the entropy conservative scheme entropy stable, interface dis-
sipation is added. The numerical dissipation added for the inviscid SATs (i.e.,
added to the right-hand side of the discretization) is motivated by a Roe approxi-
mate Riemann solver (for a detailed discussion see Refs. [5,43,20,18]). The inviscid
dissipation for element L is given as

dissL ≡−
(

PL
)−1

RT
LPL
⊥ξ̂1





4∑

f=1

IRf toL

∣∣∣∣∣
∂FI

ξ̂1

∂W

∣∣∣∣∣
Rf

(
ILtoRf

RLwL − RRfwRf

)


 ,

(67)

where

RL ≡
(
eLN1

)T
⊗ IL ⊗ IL ⊗ I5,

PL
⊥ξ̂1 ≡

∆L
2∆

L
3

4
P
(1D)
L ⊗ P

(1D)
L ⊗ I5,

IRf toL ≡ I2Rf toL ⊗ I3Rf toL ⊗ I5,

ILtoRf
≡ I2LtoRf

⊗ I3LtoRf
⊗ I5,

RRf ≡
(
e
Rf
11

)T
⊗ IRf ⊗ IRf ⊗ I5.

The inviscid dissipation term for the Rf element is constructed as

dissRf ≡−
(

PR
f

)−1
RT
RfP

Rf

⊥ξ̂1

∣∣∣∣∣
∂FI

ξ̂1

∂W

∣∣∣∣∣
Rf

(
RRfwRf − ILtoRf

RLwL

)
, (68)

where ∣∣∣∣
∂FI

∂W

∣∣∣∣ ≡ Y |Λ|YT.

The matrices Y and Λ are block diagonal matrices constructed by assembling the
pointwise 5× 5 matrices obtained from the decomposition of the Jacobian matrix
of F with respect to W and evaluated at the Roe-averaged of two states. In

particular,

∣∣∣∣
∂FI

ξ̂1

∂W

∣∣∣∣
Rf

is constructed from the Roe averaged states of ILtoRqL
and

qRf .
Next, a theorem on the accuracy, stability, elementwise conservation, and free-

stream preservation of the inviscid dissipation term is presented.

Theorem 5 The dissipation terms Eqs. (67) and (68) are of order min (pL, pR1
, . . . , pR4

)+
3, and lead to an entropy stable inviscid scheme and have no impact on element-
wise conservation or free-stream preservation.

Proof The proofs are similar to those in Refs. [20,18] and are omitted for brevity.

The viscous interface dissipation terms (interior penalty terms) take the following
form:

ILP ≡ −
(

PL
)−1

RT
LPL
⊥ξ̂1 IRf toLJ̃−1

Rf
C̃
Rf
1,1

(
ILtoRf

RLwL − RfwRf

)
, (69)

32 David C. Del Rey Fernández et al.

I
Rf
P ≡ −

(
PRf

)−1
RT
RfP

Rf

⊥ξ̂1
J̃−1
Rf

C̃
Rf
1,1

(
RRfwRf − ILtoRf

RLwL

)
, (70)

where

C̃
Rf
1,1 ≡

1

2

{
Ĉ1,1 (ILtoRf

RLqL) + Ĉ1,1

(
RRf qRf

)}
,

and the diagonal matrix J̃Rf has the metric Jacobian associated with surface of
element Rf along its diagonal. The next theorem summarizes the properties of the
viscous dissipation terms.

Theorem 6 The dissipation terms Eqs. (69) and (70) are of order min
(
pL, pR1

, . . . , pRf
)
+

3, lead to an entropy stable viscous scheme and have no impact on free-stream
preservation.

Proof The proofs are similar to those in Ref. [19] and are omitted for brevity.

In Section 8, four problems are used to characterize the h/p nonconforming
algorithm: 1) the propagation of an isentropic vortex, 2) the propagation of a
viscous shock, 3) the Taylor–Green vortex problem, and 4) the turbulent flow past
a sphere. In all cases, the boundary conditions are weakly imposed by using the
same type of mechanics as for the interface SATs discussed in this section (for
details see Refs. [44,16]).

8 Numerical experiments

In this section, we verify that the proposed h/p-algorithm retains the accuracy
and robustness of the conforming algorithm [5,44,11].

The unstructured grid h/p-adaptive solver used herein is developed at KAUST
in the Advanced Algorithms and Numerical Simulations Laboratory, which is
part of Extreme Computing Research Center (ECRC). It is built on top of the
Portable and Extensible Toolkit for Scientific computing (PETSc) [3], its mesh
topology abstraction (DMPLEX) [36] and scalable ordinary differential equation
(ODE)/differential algebraic equations (DAE) solver library [1]. The p-refinement
algorithm is fully implemented in the unstructured solver, whereas the h-refinement
strategy leverages the capabilities of the p4est library [4]. Additionally, the con-
forming numerical solver is based on the algorithms proposed in Refs. [5,44,11].
The systems of ODEs arising from the spatial discretizations are integrated using
the fourth-order accurate Dormand–Prince method [23] endowed with an adap-
tive time stepping technique based on digital signal processing [50,51]. To make
the temporal error negligible, a tolerance of 10−8 is always used for the time-step
adaptivity.

The errors are computed using volume scaled (for the L1 and L2 norms) dis-
crete norms as follows:

‖u‖L1 = Ω−1
c

K∑

κ=1

1T
κPκJκabs (uκ) ,

‖u‖2L2 = Ω−1
c

K∑

κ=1

uκPκJκuκ,

‖u‖L∞ = max
κ=1...K

abs (uκ) ,

Title Suppressed Due to Excessive Length 33

where Ωc is the volume of Ω computed as Ωc ≡
K∑
κ=1

1T
κPκJκ1κ.

8.1 Isentropic Euler vortex propagation

For verification and characterization of the inviscid components of the algorithm,
the propagation of an isentropic vortex is used. This benchmark problem has an
analytical solution, which is given by

G (x1, x2, x3, t) = 1−
{

[(x1 − x1,0)− U∞ cos (α) t]2 + [(x2 − x2,0)− U∞ sin (α) t]2
}
,

ρ = T
1

γ−1 ,

U1 = U∞ cos(α)− εν
(x2 − x2,0)− U∞ sin (α) t

2π
exp

(
G
2

)
,

U2 = U∞ sin(α)− εν
(x1 − x1,0)− U∞ cos (α) t

2π
exp

(
G
2

)
,

U3 = 0,

T =

[
1− ε2νM2

∞
γ − 1

8π2
exp (G)

]
,

where U∞, M∞, and (x1,0, x2,0, x3,0) are the modulus of the free-stream velocity,
the free-stream Mach number, and the vortex center, respectively. In this paper,
the following values are used: U∞ = M∞c∞, εν = 5, M∞ = 0.5, γ = 1.4, α = 45◦,
and (x1,0, x2,0, x3,0) = (0, 0, 0). The computational domain is

x1 ∈ [−5, 5], x2 ∈ [−5, 5], x3 ∈ [−5, 5], t ∈ [0, 2].

The analytical solution is used to furnish data for the initial condition.

First, we report on the results aimed at validating the entropy conservation
properties of the interior domain SBP-SAT algorithm. Thus, periodic boundary
conditions are used on all six faces of the computational domain. Furthermore,
all the dissipation terms used for the interface coupling are turned off. The dis-
crete integral over the volume of the time rate of change of the entropy function,∫

Ω

∂S
∂t

dΩ, is monitored at every time step. This means that at each time step the

compressible Euler equations are multiplied by the discrete entropy variables to
construct the discrete analog of the right-hand side of Eq. (55).

We subdivide the computational domain using ten hexahedrons in each co-
ordinate direction. Subsequently, we split random cells in the mesh using one or
two levels of h-refinement. Then, we assign the solution polynomial degree in each
element to a random integer chosen uniformly from the set {2, 3, 4, 5} (i.e., each
member in the set has an equal probability of being chosen). To test the con-
servation of entropy and therefore the free-stream condition when curved element
interfaces are used, we construct the LGL collocation point coordinates at element
interfaces1 as follows:

1 In a general setting, element interfaces can also be boundary element interfaces.

34 David C. Del Rey Fernández et al.

(a) Polynomial degree distribution.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

6.4

6.6

6.8

S/
td

1e 13 Spatial integral of the time derivative of the entropy

(b) Time rate of change of the entropy function.

Fig. 3: Isentropic Euler vortex.

– Construct a mesh using a pith-order polynomial approximation for the element
interfaces.

– Perturb the nodes that are used to define the pith-order polynomial approxi-
mation of the element interfaces as follows:

x1 = x1,∗ +
1

15
L1 cos (a) cos (3b) sin (4c) ,

x2 = x2,∗ +
1

15
L2 sin (4a) cos (b) cos (3c) ,

x3 = x3,∗ +
1

15
L3 cos (3a) sin (4b) cos (c) ,

where,

a =
π

L1

(
x1,∗ −

x1,H + x1,L
2

)
, b =

π

L2

(
x2,∗ −

x2,H + x2,L
2

)
,

c =
π

L3

(
x3,∗ −

x3,H + x3,L
2

)
.

The symbols L1, L2 and L3 represent the dimensions of the computational
domain in the three coordinate directions and the subscript ∗ indicates the
unperturbed coordinate of the nodes. This step yields a perturbed pith-order
polynomial.

– Compute the coordinate of the LGL points at the element interface by eval-
uating the perturbed pith-order polynomial at the LGL points used to define
the cell solution polynomial of order ps.

Herein, we use pi = 2. Figure 3a shows a cut of the mesh where each cell is
colored according to the solution polynomial degree assigned to it. Curved element
interfaces are clearly visible.

The propagation of the vortex is simulated for two time units. Figure 3b plots
the integral over the volume of the time derivative of the entropy function. We
can see that the global variation of the discrete time rate of change of S is prac-
tically zero (i.e., machine double precision). This implies that the nonconforming
algorithm is entropy conservative.

Second, we perform a grid convergence study to investigate the order of con-
vergence of the h/p-adaptive approach. The base grid (labeled with “0” in the first
column of following tables) is constructed as follows:

Title Suppressed Due to Excessive Length 35

– Divide the computational domain into four hexahedral elements in each coor-
dinate direction.

– Refine random elements by using one or two levels of h-refinement.
– Assign the solution polynomial degree in each element to a random integer

chosen uniformly from the set {ps, ps + 1}.
– Approximate the curved element interfaces with a psth-order accurate polyno-

mial.
– Construct the perturbed elements and their corresponding LGL points as de-

scribed previously.

From the base grid, which is similar to the one depicted in Figure 3a, a sequence
of nested grids is then generated to perform the convergence study. The results are
reported in Tables 1 through 4 for the error on the density. The number listed in
the first column denoted by “Levels” indicates the number of uniform refinements
in each coordinate direction.

Conforming, p = 1 Nonconforming, p = 1 and p = 2
Levels L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
0 2.74E-02 - 1.32E-03 - 1.55E-01 - 1.02E-02 - 5.80E-04 - 1.43E-01 -
1 1.14E-02 -1.26 6.61E-04 -1.00 1.12E-01 -0.47 4.38E-03 -1.22 2.82E-04 -1.04 7.17E-02 -1.00
2 5.13E-03 -1.16 3.31E-04 -1.00 7.29E-02 -0.62 1.45E-03 -1.60 9.99E-05 -1.50 4.30E-02 -0.74
3 1.70E-03 -1.59 1.15E-04 -1.52 3.01E-02 -1.28 4.16E-04 -1.80 3.02E-05 -1.72 2.29E-02 -0.91
4 4.76E-04 -1.84 3.24E-05 -1.83 8.53E-03 -1.82 1.11E-04 -1.91 8.76E-06 -1.79 1.06E-02 -1.10
5 1.23E-04 -1.96 8.33E-06 -1.96 2.13E-03 -2.00 2.61E-05 -2.09 2.28E-06 -1.94 4.05E-03 -1.40
6 3.08E-05 -1.99 2.09E-06 -1.99 5.24E-04 -2.02 6.31E-06 -2.05 5.75E-07 -1.99 1.25E-03 -1.70
7 7.68E-06 -2.00 5.23E-07 -2.00 1.30E-04 -2.01 1.56E-06 -2.02 1.50E-07 -1.94 4.45E-04 -1.48

.

Table 1: Convergence study of the isentropic vortex propagation: two levels of
h-refinement, p = 1 and p = 2; density error.

Conforming, p = 2 Nonconforming, p = 2 and p = 3
Levels L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
0 9.75E-03 - 5.32E-04 - 1.24E-01 - 2.59E-03 - 1.75E-04 - 7.52E-02 -
1 3.18E-03 -1.61 2.09E-04 -1.35 6.97E-02 -0.83 4.11E-04 -2.65 3.45E-05 -2.34 3.14E-02 -1.26
2 5.18E-04 -2.62 3.88E-05 -2.43 2.51E-02 -1.47 4.91E-05 -3.07 5.13E-06 -2.75 8.16E-03 -1.95
3 6.38E-05 -3.02 5.50E-06 -2.82 7.23E-03 -1.79 5.86E-06 -3.07 6.74E-07 -2.93 2.09E-03 -1.97
4 7.61E-06 -3.07 7.23E-07 -2.93 1.21E-03 -2.58 7.05E-07 -3.06 8.97E-08 -2.91 4.32E-04 -2.27
5 9.48E-07 -3.00 9.95E-08 -2.86 2.75E-04 -2.14 8.54E-08 -3.04 1.20E-08 -2.91 1.00E-04 -2.11
6 1.23E-07 -2.94 1.43E-08 -2.83 3.41E-05 -3.01 9.98E-09 -3.10 1.56E-09 -2.94 2.52E-05 -1.99

.

Table 2: Convergence study of the isentropic vortex propagation: two levels of
h-refinement, p = 2 and p = 3; density error.

For all the degrees tested (i.e., p = 1 to p = 5), the order of convergence of
the conforming and nonconforming algorithms is very similar. However, note that

36 David C. Del Rey Fernández et al.

Conforming, p = 3 Nonconforming, p = 3 and p = 4
Levels L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
0 5.22E-03 - 3.38E-04 - 9.16E-02 - 5.38E-04 - 4.51E-05 - 5.38E-02 -
1 6.84E-04 -2.93 5.30E-05 -2.67 4.71E-02 -0.96 4.18E-05 -3.69 3.89E-06 -3.54 5.42E-03 -3.31
2 5.50E-05 -3.64 4.54E-06 -3.55 6.61E-03 -2.83 2.61E-06 -4.00 2.82E-07 -3.78 6.47E-04 -3.07
3 3.48E-06 -3.98 3.33E-07 -3.77 5.47E-04 -3.59 1.79E-07 -3.86 1.92E-08 -3.88 7.36E-05 -3.14
4 2.10E-07 -4.05 2.45E-08 -3.76 4.93E-05 -3.47 1.09E-08 -4.04 1.23E-09 -3.96 6.93E-06 -3.41
5 1.39E-08 -3.92 1.87E-09 -3.71 6.32E-06 -2.96 7.05E-10 -3.96 8.10E-11 -3.93 8.10E-07 -3.10

.

Table 3: Convergence study of the isentropic vortex propagation: two levels of
h-refinement, p = 3 and p = 4; density error.

Conforming, p = 4 Nonconforming, p = 4 and p = 5
Levels L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
0 2.34E-03 - 1.56E-04 - 9.92E-02 - 7.48E-05 - 5.15E-06 - 4.21E-03 -
1 1.70E-04 -3.78 1.43E-05 -3.45 2.32E-02 -2.09 2.20E-06 -5.09 1.87E-07 -4.79 2.45E-04 -4.10
2 6.07E-06 -4.81 6.41E-07 -4.48 1.27E-03 -4.19 6.76E-08 -5.02 6.66E-09 -4.81 1.81E-05 -3.76
3 1.99E-07 -4.93 2.25E-08 -4.83 5.13E-05 -4.64 2.08E-09 -5.03 2.21E-10 -4.91 1.26E-06 -3.84
4 7.11E-09 -4.81 8.60E-10 -4.71 3.01E-06 -4.09 6.61E-11 -4.97 6.78E-12 -5.03 9.13E-08 -3.79

.

Table 4: Convergence study of the isentropic vortex propagation: two levels of
h-refinement, p = 4 and p = 5; density error.

in the L1 and L2 norms, the nonconforming algorithm is more accurate than the
conforming one. In the discrete L∞ norm, the nonconforming scheme is sometimes
slightly worse than the conforming scheme; this most likely results from the fact
that the interpolation matrices are suboptimal.

8.2 Viscous shock propagation

Next we study the propagation of a viscous shock using the compressible Navier–
Stokes equations. We assume a planar shock propagating along the x1 coordinate
direction with a Prandtl number of Pr∞ = 3/4. Note that the subscript ∞ refers
to the undisturbed flow on the the high pressure side of the viscous shock. The
exact solution of this problem is known; the momentum V(x1) satisfies the ODE

αV ∂V
∂x1
− (V − 1)(V − Vf) = 0; −∞ ≤ x1 ≤ +∞, t ≥ 0, (71)

whose solution can be written implicitly as

x1 −
1

2
α
(
log
∣∣(V(x1)− 1)(V(x1)− Vf)

∣∣
+

1 + Vf
1− Vf

log

∣∣∣∣ V(x1)− 1

V(x1)− Vf

∣∣∣∣) = 0,
(72)

where

Vf ≡
UL
UR

, α ≡ 2γ

γ + 1

µ

Pr∞Ṁ
. (73)

Title Suppressed Due to Excessive Length 37

Here, UL/R are known velocities to the left and right of the shock at −∞ and

+∞, respectively, Ṁ is the constant mass flow across the shock, Pr is the Prandtl
number, and µ is the dynamic viscosity. The mass and total enthalpy are con-
stant across the shock. Moreover, the momentum and energy equations become
redundant.

For our tests, V is computed from Equation (72) to machine precision using
bisection. The moving shock solution is obtained by applying a uniform translation
to the above solution. The shock is located at the center of the domain at t = 0
and the following values are used: M∞ = 2.5, Re∞ = 10, and γ = 1.4. The domain
is given by

x1 ∈ [−0.5, 0.5], x2 ∈ [−0.5, 0.5], x3 ∈ [−0.5, 0.5], t ∈ [0, 0.5].

The boundary conditions are prescribed by penalizing the numerical solution
against the exact solution. The analytical solution is also used to furnish data
for the initial condition.

The base grid (labeled with “0” in the first column of Tables 5 through 8) is
constructed as described in Section 8.1. From the base grid, which is similar to the
one depicted in Figure 3a, a sequence of nested grids is then generated to perform
the convergence study. The results are reported in Tables 5 through 8 for the error
on the density. Again, the number listed in the first column denoted by “Levels”
indicates the number of uniform refinement in each coordinate direction.

Similar to the propagation of the inviscid vortex, for all the degrees tested (i.e.,
p = 1 to p = 5), the order of convergence of the conforming and nonconforming
algorithms is similar. However, note that, the nonconforming algorithm is more
accurate than the conforming algorithm, for all the three norms reported.

Conforming, p = 1 Nonconforming, p = 1 and p = 2
Levels L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
0 5.43E-02 - 6.54E-02 - 1.40E-01 - 1.31E-02 - 2.11E-02 - 7.32E-02 -
1 2.04E-02 -1.41 2.92E-02 -1.16 8.42E-02 -0.73 3.29E-03 -1.99 5.76E-03 -1.87 2.94E-02 -1.32
2 5.56E-03 -1.87 8.45E-03 -1.79 2.85E-02 -1.57 8.39E-04 -1.97 1.46E-03 -1.98 9.16E-03 -1.68
3 1.44E-03 -1.94 2.23E-03 -1.92 8.12E-03 -1.81 2.11E-04 -1.99 3.76E-04 -1.96 2.36E-03 -1.96
4 3.68E-04 -1.97 5.66E-04 -1.98 2.26E-03 -1.84 5.03E-05 -2.07 8.97E-05 -2.07 5.97E-04 -1.98
5 9.28E-05 -1.99 1.43E-04 -1.99 6.05E-04 -1.90 1.24E-05 -2.02 2.10E-05 -2.09 1.48E-04 -2.01

.

Table 5: Convergence study of the viscous shock propagation: two levels of h-
refinement, p = 1 and p = 2; density error.

8.3 Taylor–Green vortex at Re = 1, 600

The purpose of this section is to demonstrate that the nonconforming algorithm
has the same stability properties as the conforming algorithm. To do so, the
Taylor–Green vortex problem on a very coarse grid is solved.

38 David C. Del Rey Fernández et al.

Conforming, p = 2 Nonconforming, p = 2 and p = 3
Levels L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
0 1.78E-02 - 2.68E-02 - 1.36E-01 - 1.85E-03 - 3.84E-03 - 4.86E-02 -
1 2.93E-03 -2.60 5.05E-03 -2.41 5.98E-02 -1.19 2.75E-04 -2.75 5.85E-04 -2.72 1.11E-02 -2.14
2 3.86E-04 -2.92 6.93E-04 -2.87 1.09E-02 -2.45 4.01E-05 -2.78 8.74E-05 -2.74 2.03E-03 -2.45
3 5.55E-05 -2.80 1.03E-04 -2.74 2.23E-03 -2.29 5.00E-06 -3.00 1.01E-05 -3.11 3.18E-04 -2.67
4 8.96E-06 -2.63 1.79E-05 -2.53 4.96E-04 -2.17 6.10E-07 -3.04 1.23E-06 -3.04 4.20E-05 -2.92
5 1.46E-06 -2.66 2.99E-06 -2.58 8.96E-05 -2.47 7.00E-08 -3.12 1.51E-07 -3.03 5.50E-06 -2.93

.

Table 6: Convergence study of the viscous shock propagation: two levels of h-
refinement, p = 2 and p = 3; density error.

Conforming, p = 3 Nonconforming, p = 3 and p = 4
Levels L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
0 4.45E-03 - 7.52E-03 - 7.51E-02 - 2.41E-04 - 5.24E-04 - 1.12E-02 -
1 3.40E-04 -3.71 6.50E-04 -3.53 1.19E-02 -2.66 1.80E-05 -3.74 4.11E-05 -3.67 1.01E-03 -3.47
2 2.67E-05 -3.67 5.36E-05 -3.60 1.20E-03 -3.30 1.21E-06 -3.90 3.00E-06 -3.78 8.17E-05 -3.63
3 1.95E-06 -3.77 4.25E-06 -3.66 1.25E-04 -3.26 7.30E-08 -4.05 1.90E-07 -3.98 5.82E-06 -3.81
4 1.48E-07 -3.72 3.67E-07 -3.53 1.12E-05 -3.48 4.23E-09 -4.11 1.09E-08 -4.13 3.60E-07 -4.02

.

Table 7: Convergence study of the viscous shock propagation: two levels of h-
refinement, p = 3 and p = 4; density error.

Conforming, p = 4 Nonconforming, p = 4 and p = 5
Levels L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
0 1.21E-03 - 2.28E-03 - 2.50E-02 - 3.47E-05 - 8.15E-05 - 1.90E-03 -
1 8.50E-05 -3.83 1.54E-04 -3.88 3.04E-03 -3.04 1.37E-06 -4.66 3.13E-06 -4.70 8.02E-05 -4.57
2 2.75E-05 -4.95 5.66E-06 -4.77 1.52E-04 -4.32 4.73E-08 -4.85 1.10E-07 -4.83 3.04E-06 -4.72
3 1.16E-07 -4.57 2.54E-07 -4.48 7.54E-06 -4.33 1.62E-09 -4.87 3.62E-09 -4.93 1.44E-07 -4.40
4 5.21E-09 -4.48 1.11E-08 -4.52 4.01E-07 -4.23 6.01E-11 -4.75 1.30E-10 -4.80 6.96E-09 -4.37

.

Table 8: Convergence study of the viscous shock propagation: two levels of h-
refinement, p = 4 and p = 5; density error.

The numerical solution is computed in a periodic cube [−πL ≤ x, y, z ≤ πL]
and the initial condition is given by

U1 = V0 sin
(x1
L

)
cos
(x2
L

)
cos
(x3
L

)
,

U2 = −V0 cos
(x1
L

)
sin
(x2
L

)
cos
(x3
L

)
,

U3 = 0,

P = P0 +
ρ0V2

0

16

[
cos

(
2x1
L

+ cos

(
2x2
L

))][
cos

(
2x3
L

+ 2

)]
.

(74)

Title Suppressed Due to Excessive Length 39

The flow is initialized to be isothermal, i.e., P/ρ = P0/ρ0 = RT0, and P0 = 1,
T0 = 1, L = 1, and V0 = 1. Finally, the Reynolds number is defined by Re =
(ρ0V0)/µ, where µ is the dynamic viscosity.

To obtain results that are reasonably close to those found for the incompressible
equations, a Mach number of M = 0.05 is used. Furthermore, the Reynolds num-
ber, the Prandtl number, and the initial density distribution are set to Re = 1600,
Pr = 0.71, and ρ0 = γM2, respectively, where γ = 1.4.

For this test case, a grid is constructed as follows:

– Divide the computational domain with N1h hexahedral elements in each coor-
dinate direction.

– Refine random elements by using randomly one or two levels of h-refinement.
– Assign the solution polynomial degree in each element to a random integer

chosen uniformly from a set (see the legend in Figure 4).
– Construct the perturbed elements and their corresponding LGL points as de-

scribed previously (the element interfaces are approximated using a polynomial
degree which is the minimum solution polynomial degree used in the simula-
tion).

Herein, two grids with N1h = 4 and N1h = 8 are considered. The total number
of hexahedrons is 869 and 7547, respectively. The simulations are run without
additional stabilization mechanisms (dissipation model, dealiasing, filtering, etc.),
where the only numerical dissipation originates from the upwind interelement cou-
pling procedure.

Figure 4 shows the time rate of change of the kinetic energy, dke/dt, for the
nonconforming algorithm using a random distribution of the solution polynomial
order between i) p = 2 and p = 8 and ii) p = 7 and p = 13. The reference
direct numerical solution (DNS) reported in [60] is also plotted. We note that by
increasing the order of accuracy of the solution polynomial in each cell and the grid
density, the solution moves closer to the DNS solution. The main takeaway from
the figure is that all simulations are stable, which is numerical evidence that the
h/p nonconforming scheme inherits the stability characteristics of the conforming
and fully-staggered algorithms [5,44,6,11,42].

8.4 Flow around a sphere at Re = 2000

In this section, we test our implementation within a more complex setting repre-
sented by the flow around a sphere at Re∞ = 2000, based on the sphere diameter,
d, and M∞ = 0.05. These similarity flow parameters are defined using the undis-
turbed flow conditions upstream of the sphere. With this value of the Reynolds
number, the flow is fully turbulent.

The sphere is centered at the origin of the axes, and a box is respectively
extended 20d and 60d upstream and downstream the direction of the flow; the box
size is 30d in both the x2 and x3 directions. As boundary conditions, we consider
adiabatic solid walls at the surface of the sphere [16] and far field on all faces of the
box. We use a grid with 24,704 hexahedral elements. Figure 5 shows the mesh near
the sphere. The colors indicate the solution polynomial order used in each cell. The
quality of the elements is good in the boundary layer region whereas in the other
portion of the domain the quality is fairly poor. This choice is intentional and is

40 David C. Del Rey Fernández et al.

0 5 10 15 20
Time

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

d
k
e/
d
t

Time derivative of the kinetic energy

Non-conforming, p = 2÷ 8, distorted grid: 43, 2 h-levels

Non-conforming, p = 2÷ 8, distorted grid: 83, 2 h-levels

Non-conforming, p = 7÷ 13, distorted grid: 43, 2 h-levels

Non-conforming, p = 7÷ 13, distorted grid: 83, 2 h-levels

DNS, Carton de Wiart et al.

Fig. 4: Evolution of the time derivative of the kinetic energy for the Taylor–Green
vortex at Re = 1600, M = 0.05.

Fig. 5: Polynomial degree distribution for the mesh around a sphere; gray p = 2,
orange p = 3, blue p = 6, and green p = 4.

〈CD〉
Munson et al. [37] 0.412

Present 0.416
.

Table 9: Time-average drag coefficient of a sphere at Re = 2000, M = 0.05.

for the purpose of demonstrating the performance of the algorithm on nonideal
grids.

We compute the time-average value of the drag coefficient, 〈CD〉, and we com-
pare it with the value reported in literature [37]. From Table 9, we can see that
the computed time-average drag coefficient matches very well the reference value.

Title Suppressed Due to Excessive Length 41

0.0 0.5 1.0 1.5 2.0
Time

0

1

2

3

4

5
∫ Ω
S
d

Ω

×10−13 Spatial integral of the entropy

Dorman-Prince(5,4) with relaxation

Dorman-Prince(5,4) without relaxation

Fig. 6: Evolution of the discrete spatial integral of the entropy function.

8.5 Entropy conservation of the fully-discrete explicit discretization

To conclude the numerical results section, we demonstrate the entropy conserva-
tion of the fully-discrete explicit discretization of the compressible Navier–Stokes
equations by integrating in time the system of ODEs, which arise from the spatial
discretization with an explicit relaxation Runge–Kutta scheme [46]. As shown in
Refs. [34,46], the term “relaxation” represents a general approach that allows any
Runge–Kutta method to preserve the correct time evolution of an arbitrary func-
tional, without sacrificing the linear covariance, accuracy, or stability properties of
the original method. In the context of the compressible Euler and Navier–Stokes
equations, the relaxation Runge–Kutta scheme is constructed to preserve the dis-
crete entropy function obtained from the spatial discretization. This leads to a
fully discrete algorithm that is entropy conservative or entropy stable if the spa-
tial discretization is entropy conservative or entropy stable, respectively.

As a model problem, we again use the propagation of an isentropic vortex and
we analyze the time evolution of the entropy function, which for the current set-
ting must be zero. The same grid and solution polynomial distribution shown in
Figure 3a is used for this test case. To achieve entropy conservation at the spa-
tial level, all the dissipation terms used for the interface coupling are turned off,
including upwind and interior penalty SATs. The fourth-order accurate Dormand–
Prince method [23], with and without a relaxation algorithm, are used. We show
the entropy variation in Figure 6. The entropy is conserved up to machine (dou-
ble) precision using relaxation, whereas, without relaxation, the solution shows
significant essentially monotone changes in the total entropy function.

42 David C. Del Rey Fernández et al.

9 Conclusions

In this paper, the p-refinement/coarsening algorithms in [19,20,18] are extended
to arbitrary h/p-refinement/coarsening. To obtain an algorithm for which the dis-
crete GCL conditions are solved for element by element, the surface metric terms
need to be localized to the small elements on an h-refined face. The discrete GCL
conditions are then solved using the procedure in Crean et al. [14]. The resulting al-
gorithm is entropy conservative/stable, elementwise conservative, and free-stream
preserving. Finally, the algorithm is shown to retain the accuracy and stability
characteristics of the original conforming scheme [5,42] on a set of test problems
and, when coupled with relaxation Runge–Kutta schemes [46], yields a fully dis-
crete entropy conservative/stable scheme.

Acknowledgements The research reported in this publication was supported by funding
from King Abdullah University of Science and Technology (KAUST). We are thankful for the
computing resources of the Supercomputing Laboratory and the Extreme Computing Research
Center at KAUST. Special thanks are extended to Dr. Mujeeb R. Malik for supporting this
work as part of the NASA Transformational Tools and Technologies, T 3, project.

References

1. Abhyankar, S., Brown, J., Constantinescu, E.M., Ghosh, D., Smith, B.F., Zhang, H.:
PETSc/TS: A modern scalable ODE/DAE solver library. arXiv preprint arXiv:1806.01437
(2018)

2. Altmann, C., Beck, A.D., Hindenlang, F., Staudenmaier, M., Gassner, G.J., Munz, C.D.:
An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Ele-
ment Method, pp. 37–47. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May,
D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini,
S., Zhang, H., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.11,
Argonne National Laboratory (2019)

4. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM Journal on Scientific Computing 33(3),
1103–1133 (2011). DOI 10.1137/100791634

5. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collo-
cation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM Journal
on Scientific Computing 36(5), B835–B867 (2014)

6. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Parsani, M., Svärd, M., Yamaleev, N.: En-
tropy stable summation-by-parts formulations for computational fluid dynamics. Hand-
book of Numerical Analysis (17), 495–524 (2016)

7. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-
difference schemes solving hyperbolic systems: Methodology and application to high-order
compact schemes. Journal of Computational Physics 111(2), 220–236 (1994)

8. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treat-
ment of arbitrary spatial accuracy. Journal of Computational Physics 148(2), 341–365
(1999)

9. Carpenter, M.H., Nordström, J., Gottlieb, D.: Revisiting and extending interface penalties
for multi-domain summation-by-parts operators. Journal of Scientific Computing 45(1-3),
118–150 (2010)

10. Carpenter, M.H., Parsani, M., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid
spectral collocation for the Burgers’ and compressible Navier–Stokes equations. NASA
TM-2015-218990 (2015)

11. Carpenter, M.H., Parsani, M., Fisher, T.C., Nielsen, E.J.: Towards and entropy stable
spectral element framework for computational fluid dynamics. In: 54th AIAA Aerospace

Title Suppressed Due to Excessive Length 43

Sciences Meeting, AIAA 2016-1058. American Institute of Aeronautics and Astronautics
(AIAA) (2016)

12. Chan, J., Del Rey Fernández, D.C., Carpenter, M.H.: Efficient entropy stable Gauss col-
location methods. (Submitted to SIAM Journal on Scientific Computing) (2018)

13. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes
for compressible Euler and Navier–Stokes equations. Communications in Computational
Physics 14(5), 1252–1286 (2013)

14. Crean, J., Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W., Carpenter, M.H.: Entropy-
stable summation-by-parts discretization of the Euler equations on general curved ele-
ments. Journal of Computational Physics 356, 410 –438 (2018)

15. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Springer-Verlag,
Berlin (2010)

16. Dalcin, L., Rojas, D., Zampini, S., Del Rey Fernández, D.C., Carpenter, M.H., Parsani,
M.: Conservative and entropy stable solid wall boundary conditions for the compressible
Navier–Stokes equations: Adiabatic wall and heat entropy transfer. Journal of Computa-
tional Physics 397 (2019)

17. Del Rey Fernández, D.C., Boom, P.D., Zingg, D.W.: A generalized framework for nodal
first derivative summation-by-parts operators. Journal of Computational Physics 266(1),
214–239 (2014)

18. Del Rey Fernández, D.C., Carpenter, M.H., Dalcin, L., Fredrich, L., Winters, A.R.,
Gassner, G.J., Zampini, S., Parsani, M.: Entropy stable non-conforming discretizations
with the summation-by-parts property for curvilinear coordinates. NASA TM-2019- (2019)

19. Del Rey Fernández, D.C., Carpenter, M.H., Dalcin, L., Fredrich, L., Winters, A.R.,
Gassner, G.J., Zampini, S., Parsani, M.: Entropy stable nonconforming discretization with
the summation-by-parts property for the compressible Navier–Stokes equations. Submit-
ted Computers & fluids (2019)

20. Del Rey Fernández, D.C., Carpenter, M.H., Dalcin, L., Fredrich, L., Winters, A.R.,
Gassner, G.J., Zampini, S., Parsani, M.: Entropy stable p−nonconforming discretizations
with the summation-by-parts property for the compressible Euler equations. Submitted
SIAM Journal of Scientific Computing (2019)

21. Del Rey Fernández, D.C., Crean, J., Carpenter, M.H., Hicken, J.E.: Staggered entropy-
stable summation-by-parts discretization of the Euler equations on general curved ele-
ments. Journal of Computational Physics 392, 161–186 (2019)

22. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts op-
erators with simultaneous approximation terms for the numerical solution of partial dif-
ferential equations. Computers & Fluids 95(22), 171–196 (2014)

23. Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. Journal of
Computational and Applied Mathematics 6(1), 19 – 26 (1980)

24. Fisher, T.C.: High-order l2 stable multi-domain finite difference method for compressible
flows. Ph.D. thesis, Purdue University (2012)

25. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for
nonlinear conservation laws: Finite domains. Journal of Computational Physics 252(1),
518–557 (2013)

26. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K.: Discretely conservative
finite-difference formulations for nonlinear conservation laws in split form: Theory and
boundary conditions. Journal of Computational Physics 234(1), 353–375 (2013)

27. Flad, D., Gassner, G.J.: On the use of kinetic energy preserving DG-schemes for large
eddy simulation. Journal of Computational Physics 350, 782–795 (2017)

28. Friedrich, L., Shnücke, G., Winters, A.R., Del Rey Fernández, D.C., Gassner, G.J., Car-
penter, M.H.: Entropy stable space-time discontinuous Galerkin schemes with summation-
by-parts property for hyperbolic conservation laws. Journal of Scientific Computing 80(1),
175–222 (2019)

29. Friedrich, L., Winters, A.R., Del Rey Fernández, D.C., Gassner, G.J., Parsani, M., Car-
penter, M.H.: An entropy stable h/p non-conforming discontinuous Galerkin method with
the summation-by-parts property. Journal of Scientific Computing pp. 1–37 (2018)

30. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin
schemes with summation-by-parts property for the compressible Euler equations. Journal
of Computational Physics 327(C), 39–66 (2016)

31. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative
discontinuous Galerkin spectral element method for the shallow water equations. Applied
Mathematics and Computation 272(2), 291–308 (2016)

44 David C. Del Rey Fernández et al.

32. Hadri, B., Parsani, M., Hutchinson, M., Heinecke, A., Dalcin, L., Keyes, D.: Performance
study of sustained petascale direct numerical simulation on Cray XC40 systems (Trinity,
Shaheen2 and Cori). Concurrency and Computation: Practice and Experience (2020)

33. Hutchinson, M., Heinecke, A., Pabst, H., Henry, G., Parsani, M., Keyes, D.: Efficiency of
high order spectral element methods on petascale architectures. In: International Confer-
ence on High Performance Computing, pp. 449–466 (2016)

34. Ketcheson, D.I.: Relaxation Runge–Kutta methods: Conservation and stability for inner-
product norms. SIAM Journal on Numerical Analysis 57(6), 2850–2870 (2019)

35. Klose, B.F., Jacobs, G.B., Kopriva, D.A.: On the robustness and accuracy of marginally
resolved discontinuous Galerkin schemes for two dimensional Navier–Stokes flows. In:
AIAA Scitech 2019 Forum, p. 0780. American Institute of Aeronautics and Astronautics
(2019)

36. Knepley, M.G., Karpeev, D.A.: Mesh algorithms for PDE with Sieve I: Mesh distribution.
Scientific Programming 17(3), 215–230 (2009)

37. Munson, B.R., Young, B.F., Okiishi, T.H.: Fundamental of fluid mechanics, second edn.
Wiley (1990)

38. Nordström, J., Carpenter, M.H.: Boundary and interface conditions for high-order finite-
difference methods applied to the Euler and Navier–Stokes equations. Journal of Compu-
tational Physics 148(2), 621–645 (1999)

39. Nordström, J., Carpenter, M.H.: High-order finite-difference methods, multidimensional
linear problems, and curvilinear coordinates. Journal of Computational Physics 173(1),
149–174 (2001)

40. Olsson, P., Oliger, J.: Energy and maximum norm estimates for nonlinear conservation
laws. Tech. Rep. 94–01, The Research Institute of Advanced Computer Science (1994)

41. Parsani, M., Boukharfane, R., Nolasco, I., Del Rey Fernández, D.C., Zampini, S., Dalcin,
L.: Unveiling the potential of high-order accurate entropy stable discontinuous collocated
Galerkin methods for the next generation of compressible CFD frameworks: SSDC algo-
rithms and flow solver. submitted to Journal of Computational Physics (2020)

42. Parsani, M., Carpenter, M.H., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid
discontinuous spectral collocation methods of any order for the compressible Navier–Stokes
equations. SIAM Journal on Scientific Computing 38(5), A3129–A3162 (2016)

43. Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable discontinuous interfaces cou-
pling for the three-dimensional compressible Navier–Stokes equations. Journal of Compu-
tational Physics 290, 132–138 (2015)

44. Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for
the three-dimensional compressible Navier–Stokes equations. Journal of Computational
Physics 292(1), 88–113 (2015)

45. Pazner, W., Persson, P.O.: Analysis and entropy stability of the line-based discontinuous
Galerkin method. Journal of Scientific Computing 80(1), 376–402 (2019)

46. Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge–
Kutta methods: Fully-discrete explicit entropy-stable schemes for the Euler and Navier–
Stokes equations. In Press, SIAM Journal on Scientific Computing (2019)

47. Rojas, D., Boukharfane, R., Dalcin, L., Del Rey Fernández, D.C., Ranocha, H., Keyes,
D., Parsani, M.: On the robustness and performance of entropy stable discontinuous col-
location methods for the compressible Navier–Stokes equations. submitted to Journal of
Computational Physics (2019)

48. Sandham, N.D., Li, Q., Yee, H.C.: Entropy splitting for high-order numerical simulation
of compressible turbulence. Journal of Computational Physics 178(2), 307–322 (2002)

49. Sjörn, B., Yee, H.C.: High order entropy conservative central schemes for wide ranges
of compressible gas dynamics and MHD flows. Journal of Computational Physics 364,
153–185 (2018)

50. Söderlind, G.: Digital filters in adaptive time-stepping. ACM Transactions on Mathemat-
ical Software 29(1), 1–26 (2003)

51. Söderlind, G., Wang, L.: Adaptive time-stepping and computational stability. Journal of
Computational and Applied Mathematics 185(2), 225–243 (2006)

52. Svärd, M.: Weak solutions and convergent numerical schemes of modified compressible
Navier–Stokes equations. Journal of Computational Physics 288(C), 19–51 (2015)

53. Svärd, M., Carpenter, M.H., Parsani, M.: Entropy stability and the no-slip wall boundary
condition. SIAM Journal on Numerical Analysis 56(1), 256–273 (2018)

54. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-
value-problems. Journal of Computational Physics 268(1), 17–38 (2014)

Title Suppressed Due to Excessive Length 45

55. Svärd, M., Özcan, H.: Entropy-stable schemes for the Euler equations with far-field and
wall boundary conditions. Journal of Scientific Computing 58(1), 61–89 (2014)

56. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation
laws I. Mathematics of Computation 49(179), 91–103 (1987)

57. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conserva-
tion laws and related time-dependent problems. Acta Numerica 12, 451–512 (2003)

58. Thomas, D., Lombard, C.K.: Geometric conservation law and its application to flow com-
putations on moving grids. AIAA Journal 17(10), 1030–1037 (1979)

59. Vinokur, M., Yee, H.C.: Extension of efficient low dissipation high order schemes for 3-d
curvilinear moving grids. In: D.A. Caughey, M. Hafez (eds.) Frontiers of Computational
Fluid Dynamics, pp. 129–164. World Scientific Publishing Company (2002)

60. de Wiart, C., Hillewaert, K., Duponcheel, M., Winckelmans, G.: Assessment of a discon-
tinuous Galerkin method for the simulation of vortical flows at high Reynolds number.
International Journal for Numerical Methods in Fluids 74(7), 469–493 (2014)

61. Winters, A.R., Derigs, D., Gassner, G.J., Walch, S.: Uniquely defined entropy stable matrix
dissipation operator for high Mach number ideal MHD and compressible Euler simulations.
Journal of Computational Physics 332(1), 274–289 (2017)

62. Winters, A.R., J.Gassner, G.: A comparison of two entropy stable discontinuous Galerkin
spectral element approximations to the shallow water equations with non-constant topog-
raphy. Journal of Computational Physics 301(1), 357–376 (2015)

63. Winters, A.R., Moura, R.C., Mengaldo, G., Gassner, G.J., Walch, S., Peiro, J., Sherwin,
S.J.: A comparative study on polynomial dealiasing and split form discontinuous Galerkin
schemes for under-resolved turbulence computations. Journal of Computational Physics
372, 1–21 (2018)

64. Yee, H.C., Vinokur, M., Djomehri, M.J.: Entropy splitting and numerical dissipation.
Journal of Computational Physics 162(1), 33–81 (2000)

A Implementation details for the discretization of the
convection-diffusion equation

The expanded version of the discretization in Eqs. (26), (27), (28), and (29) gives further in-
sight into the implementation of the algorithm. However, the compact formulation relies on
the use of tensor-products and notational abstractions which can obscure how to implement
the algorithm in practice. In this appendix, we try and expand the algorithm in pseudocode
to help the interested reader. We present a simple approach to implementing the algorithm,
where we make no claim to computational efficiency. Indeed, this is a difficult task because
efficiency, particularly in the context of high-performance computing, relies on numerous fac-
tors. Nevertheless, we hope that what is presented in this appendix is helpful in obtaining a
first version of the algorithm.

Assuming that the metric terms have already been computed, the steps in constructing a
right-hand side evaluation for time advancement are as follows:

1. Construct and store the auxiliary flux variables θa
– Compute the on element derivative Dξ̂au

– Compute the SATs

2. Compute the on element inviscid derivative
3∑
l=1

(
Dξ̂l

[
Ĵκ ∂ξ̂l

∂xm

]
+
[
Ĵκ ∂ξ̂l

∂xm

]
Dξ̂l

)
u for each

of the Cartesian directions

3. Compute the on element viscous derivative
3∑
l=1

(
Dξ̂l

[
Ĉl,a

]
θa
)
u for each of the Cartesian

directions
4. Compute the inviscid SATs
5. Compute the viscous SATs

Of course, one can combine the two on element computations and similarly the computation
of the SATs.

While tensor-products are used to describe the SBP operators, storing and applying the
resulting sparse matrices is not computationally advisable. In a general code that handles
arbitrary SBP operators, the SBP matrices could be stored in compressed sparse row format.

46 David C. Del Rey Fernández et al.

However, such a choice has important storage and computational implications. Instead, one
can take advantage of the tensor-product nature and apply the operators node by node. For
example, the following code applies an SBP operator in a specified direction:

1 function du = derivative(u,D,N,direction)
2 % u = solution vector organized with xi_3 varying most rapidly ,
3 % followed by xi_2 , and then xi_1
4 % D = one -dimensional SBP derivative operator
5 % N = number of nodes in each direction
6 % direction = 1,2,3 for xi_1 , xi_2 , xi_3
7

8 du = zeros(N^3,1);
9

10 if(direction ==1)
11 cnt = 1;
12 stride = N^2;
13 for i = 1:N
14 for j = 1:N
15 for k = 1:N
16 for c = 1:N
17 du(cnt ,1) = du(cnt ,1)+D(i,c)*u(cnt+(c-i)* stride);
18

19 end
20 cnt = cnt +1;
21 end
22 end
23 end
24 elseif(direction ==2)
25 cnt = 1;
26 stride = N;
27 for i = 1:N
28 for j = 1:N
29 for k = 1:N
30 for c = 1:N
31 du(cnt ,1) = du(cnt ,1)+D(j,c)*u(cnt+(c-j)* stride);
32 end
33 cnt = cnt +1;
34 end
35 end
36 end
37 elseif(direction ==3)
38 cnt = 1;
39 stride = 1;
40 for i = 1:N
41 for j = 1:N
42 for k = 1:N
43 for c = 1:N
44 du(cnt ,1) = du(cnt ,1)+D(k,c)*u(cnt+(c-k)* stride);
45 end
46 cnt = cnt +1;
47 end
48 end
49 end
50 end

For the first step, we compute the on element contribution of the viscous fluxes Dξ̂au using

the derivative function. Next, we apply the SATs, which are constructed from on element face
and off element face contributions. However, before presenting the generic code, we take some
time to decompose the conforming and nonconforming viscous SATs. The conforming SAT for
the L element abutting the R element is constructed as

SATL ≡ −
1

2
P−1

{(
eN (eN)T ⊗ P(1D) ⊗ P(1D)

)
uL −

(
eN (e1)T ⊗ P(1D) ⊗ P(1D)

)
uR

}
.

(75)
Manipulating the tensor products gives

SATL =
1

2

{(
P(1D)

)−1
eN ⊗ IN ⊗ IN

}{(
eTN ⊗ IN ⊗ IN

)
uL −

(
eT1 ⊗ IN ⊗ IN

)
uR

}
. (76)

Title Suppressed Due to Excessive Length 47

The action of
(
eTN ⊗ IN ⊗ IN

)
on uL is to construct a vector of size N × N of the values of

uL at the nodes of the joint surface. Similarly, the action of
(
eT1 ⊗ IN ⊗ IN

)
is to construct a

vector of size N ×N of uR a the nodes of the joint surface. The difference is then computed
and this is inserted back onto the appropriate locations in the right-hand side vector, scaled

by 1/P(1D)(N,N) by
{(

P(1D)
)−1

eN ⊗ IN ⊗ IN

}
.

We now analyze the nonconforming SAT in the same way; we reproduce here for conve-
nience the SAT given in the body of the paper:

SATL ≡ −
1

2
P−1
L

{(
eLN

(
eLN

)T
⊗ P

(1D)
L ⊗ P

(1D)
L

)
uL

−
4∑

f=1

(
eLN

(
e
Rf
1

)T
⊗ P

(1D)
L I2Rf toL ⊗ P

(1D)
L I3Rf toL

)
uRf

 .

(77)

Performing similar manipulations as before gives

SATL =
1

2

{(
P
(1D)
L

)−1
eLN ⊗ ILN ⊗ ILN

}

((
eLN

)T
⊗ ILN ⊗ ILN

)
uL −

4∑
f=1

((
e
Rf
1

)T
⊗ I2Rf toL ⊗ I3Rf toL

)
uRf

 .

(78)

The only matrix that has changed is the one acting on uRf , i.e.,

((
e
Rf
1

)T
⊗ I2Rf toL

⊗ I3Rf toL

)
.

Loosely speaking, this matrix interpolates uRf to the face nodes of element L (it does not

exactly interpolate, rather the combination of the 4 operators interpolates a function from the
face of the macro element to the face of the L element).

With this background, the SAT can be generically viewed as creating a flux difference
between the on element face flux and an off element numerical face flux, which is then scaled
by the norm matrix and positioned in the appropriate locations in the right-hand side vector.
Thus, a generic code for computing these SATs contributions is

1 sat = function sat_scalar(f_on ,f_num ,P,N,face)
2 % f_on = is the on element face flux
3 % f_num = is the numerical face flux composed of the off element flux and possibly the
4 % on element flux
5 % P = is the one -dimensional SBP norm matrix
6 % N = number of nodes in each direction for the element where f_on is coming from
7 % face = 1,2,3,4,5,6 where
8 % 1 = face where xi_1 is minimum
9 % 2 = face where xi_1 is maximum

10 % 3 = face where xi_2 is minimum
11 % 4 = face where xi_2 is maximum
12 % 5 = face where xi_3 is minimum
13 % 6 = face where xi_3 is maximum
14 % Note that this constructs the difference and appropriately scales it
15 % with the norm matrix. You then have to place the result in the appropriate
16 % locations in your right -hand side vector.
17

18 df = f_on -f_num;
19

20 %-set the negative of the component of the outwardfacing normal
21 if((face ==1)||(face ==3)||(face ==5))
22 nxi_neg = 1;
23 pinv = P(1,1);
24 else
25 nxi_neg = -1;
26 pinv = P(N,N);
27 end
28

29 sat = nxi_neg*pinv*df;

48 David C. Del Rey Fernández et al.

Thus, for the conforming case, in matrix nomenclature what is being passed is

fon =

((
eLN

)T
⊗ ILN ⊗ ILN

)
uL, fnum =

1

2

(
fon +

(
eT1 ⊗ IN ⊗ IN

)
uR

)
.

In the nonconforming case, the only thing that changes is fnum, which is given as

fnum =
1

2

fon +

4∑
f=1

((
e
Rf
1

)T
⊗ I2Rf toL ⊗ I3Rf toL

)
uRf

 .

Next, the inviscid derivatives are computed. As for the viscous fluxes computation, we can
construct an approach that does not use matrix multiplication of the sparse matrices Dξ̂l

and[
Ĵκ ∂ξ̂l

∂xm

]
. The following function performs the required operations:

1 function du = derivative_curv(u,Jdxidx ,D,N,m)
2 % u = solution vector organized with xi_3 varying most rapidly ,
3 % followed by xi_2 , and then xi_1
4 % Jdxidx = array orgnaized as (xi_1 ,xi_2 ,xi_3 ,1:9), where
5 % Jdxidx(i,j,k,1) = Jdxi_1/dx_1 , Jdxidx(i,j,k,2) = Jdxi_1/dx_2 ,
6 % Jdxidx(i,j,k,3) = Jdxi_1/dx_3
7 % Jdxidx(i,j,k,4) = Jdxi_2/dx_1 , Jdxidx(i,j,k,5) = Jdxi_2/dx_2 ,
8 % Jdxidx(i,j,k,6) = Jdxi_2/dx_3
9 % Jdxidx(i,j,k,7) = Jdxi_3/dx_1 , Jdxidx(i,j,k,8) = Jdxi_3/dx_2 ,

10 % Jdxidx(i,j,k,9) = Jdxi_3/dx_3
11

12 % D = one -dimensional SBP derivative operator
13 % N = number of nodes in each direction
14 % m = Cartesian coordinate direction 1,2,3 for x_1 , x_2 , x_3
15

16 if(m==1)
17 d_xi_1 = 1;% which metric in the xi_1 direction
18 d_xi_2 = 4;% which metric in the xi_2 direction
19 d_xi_3 = 7;% which metric in the xi_3 direction
20 elseif(m==2)
21 d_xi_1 = 2;
22 d_xi_2 = 5;
23 d_xi_3 = 8;
24 elseif(m==3)
25 d_xi_1 = 3;
26 d_xi_2 = 6;
27 d_xi_3 = 9;
28 end
29 du = zeros(N^3,1);
30

31 cnt = 1;
32 s_xi_1 = N^2;% stride in the xi_1 direction
33 s_xi_2 = N ;% stride in the xi_2 direction
34 s_xi_3 = 1 ;% stride in the xi_3 direction
35 for i = 1:N
36 for j = 1:N
37 for k = 1:N
38 for c = 1:N
39 du(cnt) = du(cnt)+...
40 0.5*D(i,c)*u(cnt+(c-i)*s_xi_1 ,1)*(Jdxidx(i,j,k,d_xi_1)+...
41 Jdxidx(c,j,k,d_xi_1))+...
42 0.5*D(j,c)*u(cnt+(c-j)*s_xi_2 ,1)*(Jdxidx(i,j,k,d_xi_2)+...
43 Jdxidx(i,c,k,d_xi_2))+...
44 0.5*D(k,c)*u(cnt+(c-k)*s_xi_3 ,1)*(Jdxidx(i,j,k,d_xi_3)+...
45 Jdxidx(i,j,c,d_xi_3));
46 end
47 cnt = cnt +1;
48 end
49 end
50 end

The remaining computations can be carried out by reusing the above functions. Thus, the
viscous fluxes can be computed using the derivative function, where the θa fluxes need to be

Title Suppressed Due to Excessive Length 49

scaled by
[
Ĉl,a

]
. Moreover, the inviscid and viscous SATs can be computed using the sat_scalar

function with the appropriate construction of f_on and f_num.

B Implementation details for the entropy conservative discretization

The viscous terms follow directly from the discretization of the viscous terms in the convection-
diffusion equation. However, the introduction of the Hadamard product in the inviscid terms
requires further explanation.

We start first with the derivative operator and as in the convection-diffusion context we do
not implement the operator by multiplying out matrices and taking the Hadamard product.
Instead, we proceed pointwise. The following code illustrates how to compute

3∑
l=1

(
Dξ̂l

[
Ĵκ

∂ξ̂l

∂xm

]
+

[
Ĵκ

∂ξ̂l

∂xm

]
Dξ̂l

)
◦ Fxm (q, q)1.

1 function dq = derivative_curv_Hadamard(q,Jdxidx ,D,N,m)
2 % q = solution vector (vector of conservative variables)
3 % organized with xi_3 varying most rapidly , followed by
4 % xi_2 , and then xi_1 and is of size (N^3,5)
5 % Jdxidx = array orgnaized as (xi_1 ,xi_2 ,xi_3 ,1:9), where
6 % Jdxidx(i,j,k,1) = Jdxi_1/dx_1 , Jdxidx(i,j,k,2) = Jdxi_1/dx_2 ,
7 % Jdxidx(i,j,k,3) = Jdxi_1/dx_3
8 % Jdxidx(i,j,k,4) = Jdxi_2/dx_1 , Jdxidx(i,j,k,5) = Jdxi_2/dx_2 ,
9 % Jdxidx(i,j,k,6) = Jdxi_2/dx_3

10 % Jdxidx(i,j,k,7) = Jdxi_3/dx_1 , Jdxidx(i,j,k,8) = Jdxi_3/dx_2 ,
11 % Jdxidx(i,j,k,9) = Jdxi_3/dx_3
12

13 % D = one -dimensional SBP derivative operator
14 % N = number of nodes in each direction
15 % m = Cartesian coordinate direction 1,2,3 for x_1 , x_2 , x_3
16 % Note that flux_fun is a function that calculates the two -point flux
17 % functions using , for example , the Chandrashekar flux function in the
18 % m Cartesian direction
19

20 if(m==1)
21 d_xi_1 = 1;% which metric in the xi_1 direction
22 d_xi_2 = 4;% which metric in the xi_2 direction
23 d_xi_3 = 7;% which metric in the xi_3 direction
24 elseif(m==2)
25 d_xi_1 = 2;
26 d_xi_2 = 5;
27 d_xi_3 = 8;
28 elseif(m==3)
29 d_xi_1 = 3;
30 d_xi_2 = 6;
31 d_xi_3 = 9;
32 end
33 dq = zeros(N^3,1);
34

35 cnt = 1;
36 s_xi_1 = N^2;% stride in the xi_1 direction
37 s_xi_2 = N ;% stride in the xi_2 direction
38 s_xi_3 = 1 ;% stride in the xi_3 direction
39 for i = 1:N
40 for j = 1:N
41 for k = 1:N
42 for c = 1:N
43 flux1 = flux_fun(q(cnt ,:),q(cnt+(c-i)*s_xi_1 ,:),m);
44 flux2 = flux_fun(q(cnt ,:),q(cnt+(c-j)*s_xi_2 ,:),m);
45 flux3 = flux_fun(q(cnt ,:),q(cnt+(c-k)*s_xi_3 ,:),m);
46 dq(cnt ,1) = dq(cnt ,1)+...
47 D(i,c)*flux1*(Jdxidx(i,j,k,d_xi_1)+ Jdxidx(c,j,k,d_xi_1))+...
48 D(j,c)*flux2*(Jdxidx(i,j,k,d_xi_2)+ Jdxidx(i,c,k,d_xi_2))+...
49 D(k,c)*flux3*(Jdxidx(i,j,k,d_xi_3)+ Jdxidx(i,j,c,d_xi_3));

50 David C. Del Rey Fernández et al.

50 end
51 cnt = cnt +1;
52 end
53 end
54 end

Note that as stated in the code, the function flux_fun needs to be furnished. This is the
function that computes the two point-fluxes and can be constructed, for example, using the
approach of Chandrashekar [13].

We will reuse the SAT routine used in the convection-diffusion discretization. In order to
see how this can be done, consider first that the Hadamard product between two matrices
is the pointwise multiplication of the entries of the matrices. This means that the sparsity
pattern of the left matrix must be preserved (and of course any additional sparsity in the
right matrix). Examining the matrices involved in the SATs leads to the conclusion that only
the solution at the nodes of the elements on either side of the interface are involved. Further
careful examination of the matrices involved in the SAT calculation and taking advantage of
the property of Hadamard products that C (A ◦ B) = (CA) ◦ B, if C is diagonal, leads to the
conclusion that the SAT, for example on element L, can be rearranged as

SATL =

((
P
(1D)
L eLN

)−1
⊗ ILN ⊗ ILN ⊗ I5

)
3∑
l=1

Fxm (uΓL)−
4∑

f=1

(
I2Rf toL ⊗ I3Rf toL ⊗ If

)
◦ Fxm

(
qΓL , q

Γ
Rf

)
1ΓRf

 .

(79)

The vector 1ΓRf
is a vector of ones of size

(
NRf

)2
× 5 and

qΓL ≡
((
eLN

)T
◦ ILN ⊗ ILN ⊗ I5

)
qL, qΓRf ≡

((
e
Rf
1

)T
◦ IRfN ⊗ I

Rf
N ⊗ I5

)
qRf ,

i.e., qΓL and qΓRf
are vectors that contain the solution at the nodes of the interface of the L

and Rf elements, respectively.
Now, we can see that the SAT is nothing more than a difference between two fluxes. We

reiterate that the action of

((
P
(1D)
L eLN

)−1
⊗ ILN ⊗ ILN ⊗ I5

)
is to scale the flux. The only object

that is uncommon is
(
I2Rf toL

⊗ I3Rf toL
⊗ If

)
◦ Fxm

(
uΓL ,u

Γ
Rf

)
1ΓRf

. The code for computing

this flux is given below.

1 function flux_on = interpolated_flux_Hadamard(q_on ,q_off ,Ioff2on1 ,Ioff2on2 ,...
2 N_on ,N_off ,m)
3 % q_on , q_off = values of the solution at the interface on and off the
4 % element , respectively
5 % organized with xi_3 varying most rapidly ,
6 % followed by xi_2 , and then xi_1 and is of size (Non^3,5) or (Noff ^3,5)
7 % Ioff2on1 , Ioff2on2 = one dimensional interpolation operator in the two
8 % coordinate directions on the face
9 % N_on , N_off = number of nodes in each computational direction

10 % m = Cartesian coordinate direction 1,2,3 for x_1 , x_2 , x_3
11 % Note that flux_fun is a function that calculates the two -point flux functions
12 % using , for example , the Chandrashekar flux function in the m Cartesian
13 % direction
14

15 flux_on = zeros(N_on^2,size(q_on ,2));
16 cnt_on = 1;
17 for i_on = 1:N_on
18 for j_on = 1:N_on
19 cnt_off = 1;
20 for i_off = 1: N_off
21 for j_off = 1: N_off
22 num_flux = flux_fun(q_on(cnt_on ,:),q_off(cnt_off ,:),m);
23 flux_on(cnt_on ,:) = flux_on(cnt_on ,:)+...
24 Ioff2on1(i_on ,i_off)* Ioff2on2(j_on ,j_off)* num_flux;
25 cnt_off = cnt_off +1;

Title Suppressed Due to Excessive Length 51

26 end
27 end
28 cnt_on = cnt_on +1;
29 end
30 end

Finally, f_on= Fxm
(
qΓL
)

and f_num= 1
2

(
Fxm

(
qΓL
)

+ fstar), where fstar = interpolated_flux_Hadamard(...).

	Introduction
	Notation and definitions
	An overview of the paper
	An h/p-nonconforming algorithm: Linear convection-diffusion equation
	Nonlinearly stable schemes: Viscous Burgers' equation
	Application to the compressible Navier–Stokes equations
	Interface dissipation and boundary SATs
	Numerical experiments
	Conclusions
	Implementation details for the discretization of the convection-diffusion equation
	Implementation details for the entropy conservative discretization

